A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Long-Lasting Epigenetic Changes in the Dopamine Transporter in Adult Animals Exposed to Amphetamine during Embryogenesis: Investigating Behavioral Effects. | LitMetric

The dopamine transporter (DAT) is an integral member of the dopaminergic system and is responsible for the release and reuptake of dopamine from the synaptic space into the dopaminergic neurons. DAT is also the major target of amphetamine (Amph). The effects of Amph on DAT have been intensively studied; however, the mechanisms underlying the long-term effects caused by embryonal exposure to addictive doses of Amph remain largely unexplored. As in mammals, in the nematode Amph causes changes in locomotion which are largely mediated by the DAT homologue, DAT-1. Here, we show that chronic embryonic exposures to Amph alter the expression of DAT-1 in adult via long-lasting epigenetic modifications. These changes are correlated with an enhanced behavioral response to Amph in adult animals. Importantly, pharmacological and genetic intervention directed at preventing the Amph-induced epigenetic modifications occurring during embryogenesis inhibited the long-lasting behavioral effects observed in adult animals. Because many components of the dopaminergic system, as well as epigenetic mechanisms, are highly conserved between and mammals, these results could be critical for our understanding of how drugs of abuse initiate predisposition to addiction.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487411PMC
http://dx.doi.org/10.3390/ijms241713092DOI Listing

Publication Analysis

Top Keywords

adult animals
12
long-lasting epigenetic
8
dopamine transporter
8
behavioral effects
8
dopaminergic system
8
epigenetic modifications
8
amph
6
epigenetic changes
4
changes dopamine
4
adult
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!