Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may cause severe respiratory illness with high mortality. SARS-CoV-2 infection results in a massive inflammatory cell infiltration into the infected lungs accompanied by excessive pro-inflammatory cytokine production. The lung histology of dead patients shows that some areas are severely emphysematous, with enormously dilated blood vessels and micro-thromboses. The inappropriate inflammatory response damaging the pulmonary interstitial arteriolar walls suggests that the respiratory distress may come in a large part from lung vasculature injuries. It has been recently observed that low plasmatic sphingosine-1-phosphate (S1P) is a marker of a worse prognosis of clinical outcome in severe coronavirus disease (COVID) patients. S1P is an angiogenic molecule displaying anti-inflammatory and anti-apoptotic properties, that promote intercellular interactions between endothelial cells and pericytes resulting in the stabilization of arteries and capillaries. In this context, it can be hypothesized that the benefit of a normal S1P level is due to its protective effect on lung vasculature functionality. This paper provides evidence supporting this concept, opening the way for the design of a pharmacological approach involving the use of an S1P lyase inhibitor to increase the S1P level that in turn will rescue the lung vasculature functionality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488186 | PMC |
http://dx.doi.org/10.3390/ijms241713088 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!