Bromodomain-containing protein 4 (BRD4) is an intracellular protein that regulates expression of various cellular functions. This study investigated whether BRD4 inhibition can alter the immunomodulatory and antitumor effects of radiation therapy (RT). A murine breast cancer cell line was implanted into BALB/c mice. The dual-tumor model was used to evaluate the abscopal effects of RT. A total of 24 Gy was delivered and BRD4 inhibitor was injected intravenously. Tumor size was measured, and in vivo imaging was performed to evaluate tumor growth. Flow cytometry and immunohistochemistry were performed to examine immunologic changes upon treatment. The combination of BRD4 inhibitor and RT significantly suppressed tumor growth compared to RT alone. BRD4 inhibitor reduced the size of the unirradiated tumor, indicating that it may induce systemic immune responses. The expression of HIF-1α and PD-L1 in the tumor was significantly downregulated by the BRD4 inhibitor. The proportion of M1 tumor-associated macrophages (TAMs) increased, and the proportion of M2 TAMs decreased upon BRD4 inhibition. BRD4 inhibitor expanded CD4 and CD8 T cell populations in the tumor microenvironment. Additionally, splenic monocytic myeloid derived suppressor cells, which were increased by RT, were reduced upon the addition of BRD4 inhibitor. Therefore, the addition of BRD4 inhibitor significantly enhanced the systemic antitumor responses of local RT.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487493 | PMC |
http://dx.doi.org/10.3390/ijms241713062 | DOI Listing |
Nat Commun
January 2025
Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
ATR plays key roles in cellular responses to DNA damage and replication stress, a pervasive feature of cancer cells. ATR inhibitors (ATRi) are in clinical development for treating various cancers, including those with high replication stress, such as is elicited by ARID1A deficiency, but the cellular mechanisms that determine ATRi efficacy in such backgrounds are unclear. Here, we have conducted unbiased genome-scale CRISPR screens in ARID1A-deficient and proficient cells treated with ATRi.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Medicine, Rhode Island Hospital and Brown University School of Medicine, Providence, Rhode Island, USA.
Bromodomain-containing protein 4 (BRD4) plays a vital role in fibrosis of various organs. However, the underlying mechanism of BRD4 in renal fibrosis remains unclear. To construct in vitro and in vivo models of renal fibrosis, TCMK-1 cells were subjected to TGF-β1 treatment and mice were subjected to UUO surgery and adenine induction.
View Article and Find Full Text PDFSAR QSAR Environ Res
December 2024
College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar, P. R. China.
Bromodomain-containing protein 4 (BRD4) plays an important role in gene transcription in a variety of diseases, including inflammation and cancer. However, the mechanism by which the BRD4 inhibitors bind selectively to its bromodomain 1 (BRD4-BD1) and bromodomain 2 (BRD4-BD2) remains unclear. Studying the interaction mechanism between bromodomain of BRD4 and inhibitors will provide new ideas for drug development and disease treatment.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address:
Concurrent inhibition of HDAC and BRD4, two well-established epigenetic targets for anti-tumor therapy, demonstrates the potential to enhance anti-tumor effects synergistically. The present study involves the development of a series of novel HDAC3/BRD4 dual inhibitors, followed by evaluation of their antitumor efficacy against several tumor models. Guided by scaffold hopping strategy, key pharmacophore of BRD4 inhibitor I-BET-151 was incorporated into an in-house developed HDAC3-selective inhibitor 17h.
View Article and Find Full Text PDFEur J Med Chem
December 2024
Key Laboratory of Marine Drugs and Key Laboratory of Evolution and Marine Biodiversity (Ministry of Education), School of Medicine and Pharmacy, Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao, 266237, China. Electronic address:
Bromodomain-containing protein 4 (BRD4) has been identified as a promising target in drug discovery, and the development of novel specific BRD4 bromodomain inhibitors will benefit anti-inflammatory drug discovery as well as bromodomain function role disclose. Herein, inspired by marine quinazolinone alkaloid penipanoid C, we designed and synthesized a series of quinazolin-4(3H)-ones with diverse linkers between two aromatic ring systems. Among them, compound 25 possessed good in vitro BRD4 inhibitory activities (IC = 3.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!