Early Biological Valve Failure: Structural Valve Degeneration, Thrombosis, or Endocarditis?

J Clin Med

Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino IRCCS, Via Carlo Parea 4, 20138 Milan, Italy.

Published: September 2023

Biological valve failure (BVF) is an inevitable condition that compromises the durability of biological heart valves (BHVs). It stems from various causes, including rejection, thrombosis, and endocarditis, leading to a critical state of valve dysfunction. Echocardiography, cardiac computed tomography, cardiac magnetic resonance, and nuclear imaging play pivotal roles in the diagnostic multimodality workup of BVF. By providing a comprehensive overview of the pathophysiology of BVF and the diagnostic approaches in different clinical scenarios, this review aims to aid clinicians in their decision-making process. The significance of early detection and appropriate management of BVF cannot be overstated, as these directly impact patients' prognosis and their overall quality of life. Ensuring timely intervention and tailored treatments will not only improve outcomes but also alleviate the burden of this condition on patients' life. By prioritizing comprehensive assessments and adopting the latest advancements in diagnostic technology, medical professionals can significantly enhance their ability to manage BVF effectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488994PMC
http://dx.doi.org/10.3390/jcm12175740DOI Listing

Publication Analysis

Top Keywords

biological valve
8
valve failure
8
bvf
5
early biological
4
valve
4
failure structural
4
structural valve
4
valve degeneration
4
degeneration thrombosis
4
thrombosis endocarditis?
4

Similar Publications

Characterization of LTBP2 mutation causing mitral valve prolapse.

Eur Heart J Open

January 2025

Department of Medicine, Cardiovascular Precision Medicine Center, Hadassah Hebrew University Medical Center, P.O. Box 12000, 9112001 Jerusalem, Israel.

Aims: Mitral valve prolapse (MVP) is a common valvular disorder associated with significant morbidity and mortality, with a strong genetic basis. This study aimed to identify a mutation in a family with MVP and to characterize the valve phenotype in LTBP2 knockout (KO) mice.

Methods And Results: Exome sequencing and segregation analysis were performed on a large family with MVP.

View Article and Find Full Text PDF

Background: Triglyceride-glucose-BMI (TyG-BMI) index is a surrogate marker of insulin resistance and an important predictor of cardiovascular disease. However, the predictive value of TyG-BMI index in the progression of non-severe aortic stenosis (AS) is still unclear.

Methods: The present retrospective observational study was conducted using patient data from Aortic valve diseases RISk facTOr assessmenT andprognosis modeL construction (ARISTOTLE).

View Article and Find Full Text PDF

Mitral Valve Prolapse Caused by TLL1 Gain-of-Function Mutation.

Can J Cardiol

January 2025

The Morris Kahn Laboratory of Human Genetics, Faculty of Health Sciences and National Institute of Biotechnology in the Negev, Ben Gurion University of the Negev, Be'er Sheva, Israel; Genetics Institute, Soroka University Medical Center, Be'er Sheva, Israel; The Danek Gertner Institute of Human Genetics, Sheba Medical Center, Ramat Gan, Israel. Electronic address:

Background: Mitral valve prolapse (MVP) is a common cardiac valvular anomaly that can be caused by mutations in genes of various biological pathways. Individuals of three generations of a kindred presented with apparently dominant heredity of isolated MVP.

Methods: Clinical evaluation and echocardiography for all complying family members (n=13).

View Article and Find Full Text PDF

Somatic activating mutations in KRAS can cause complex lymphatic anomalies (CLAs). However, the specific processes that drive KRAS-mediated CLAs have yet to be fully elucidated. Here, we used single-cell RNA sequencing to construct an atlas of normal and KrasG12D-malformed lymphatic vessels.

View Article and Find Full Text PDF

The biomechanical, morphological and ecophysiological properties of plant seed/fruit structures are adaptations that support survival in unpredictable environments. High phenotypic variability of noxious and invasive weed species such as Raphanus raphanistrum (wild radish) allow diversification into new environmental niches. Dry indehiscent fruits (thick and lignified pericarp [fruit coat] enclosing seeds) have evolved many times independently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!