Background: Arthroscopic revision rotator cuff repair (ARRCR) is challenging. Biologic strategies seem to be promising. The aim was to evaluate the effectiveness of the combination of microfractures of the greater tuberosity, augmentation with collagen patch graft, and platelet concentrate injections in ARRCR.

Methods: A retrospective comparative study was conducted on patients that underwent ARRCR with a minimum follow-up of two years. Patients in the augmentation group underwent ARRCR combined with microfractures, collagen patch graft, and postoperative subacromial injections of platelet concentrate. A standard rotator cuff repair was performed in the control group.

Primary Outcome: Constant-Murley score (CMS).

Secondary Outcomes: disease-specific, health-related quality of life using the Disabilities of the Arm, Shoulder, and Hand (DASH) score; assessment of tendon integrity with magnetic resonance at least six months after surgery. Significance was set at < 0.05.

Results: Forty patients were included. Mean follow-up was 36.2 ± 8.7 months. The mean CMS was greater in the augmentation group ( = 0.022). No differences could be found for DASH score. Healing failure rate was higher in the control group ( = 0.002).

Conclusion: Biologic augmentation of ARRCR using a combination of microfractures, collagen patch graft, and subacromial injections of platelet concentrate is an effective strategy in improving tendon healing rate.

Level Of Evidence: retrospective cohort study, level III.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488949PMC
http://dx.doi.org/10.3390/jcm12175694DOI Listing

Publication Analysis

Top Keywords

collagen patch
16
patch graft
16
platelet concentrate
16
rotator cuff
12
cuff repair
12
biologic augmentation
8
concentrate injections
8
arthroscopic revision
8
revision rotator
8
combination microfractures
8

Similar Publications

Attachment of Hydrogel Patches to Eye Tissue through Gel Transfer using Flexible Foils.

ACS Appl Mater Interfaces

January 2025

Department of Microsystems Engineering (IMTEK), Laboratory for Chemistry & Physics of Interfaces (CPI), Albert Ludwigs Universität Freiburg, Georges Köhler Allee 103, 79110 Freiburg, Germany.

Glaucoma, a leading cause of blindness, demands innovative and effective treatments that surpass the limitations of current drug and surgical interventions to lower intraocular pressure. This study describes the generation of cell-repellent hydrogel patches, their deposition on the ocular surface, and a photoinduced chemical binding between the patches and the collagens of the eye. The hydrophilic and protein-repellent hydrogel patch is composed of a copolymer made from dimethylacrylamide and a comonomer unit with anthraquinone moieties.

View Article and Find Full Text PDF

Cardiovascular diseases (CVDs) were responsible for approximately 19 million deaths in 2020, marking an increase of 18.7% since 2010. Biological decellularized patches are common therapeutic solutions for CVD such as cardiac and valve defects.

View Article and Find Full Text PDF

Corneal substitutes with structural and compositional characteristics resembling those of natural corneas have attracted considerable attention. However, biomimicking the complex hierarchical organization of corneal stroma is challenging. In this study, humanized corneal stroma-like adhesive patches (HCSPs) are prepared through a multi-step process.

View Article and Find Full Text PDF

SN514 is a thermolysin-like enzyme under development as a debrider. Preclinical and non-clinical studies supported a first in human healthy volunteer study to predict the need for protection of periwound skin. Pharmacologic activity testing compared digestion of collagen, fibrin, and elastin with relevant enzymes.

View Article and Find Full Text PDF

Purpose: A detailed study of the physicochemical properties of SMILE-derived lenticules and evaluation of their drug delivery after loading with silver nanoparticles (AgNPs).

Methods: The lenticules were decellularized and modified with crosslinking concentrations of 0.01 (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!