Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic dysfunction-associated steatotic liver disease (MASLD) affects ~70% of patients with type 2 diabetes (T2D), with ~20% showing signs of advanced liver fibrosis. Patients with T2D are at an increased risk of developing cirrhosis, liver failure, and hepatocellular carcinoma and their liver-related mortality is doubled compared with non-diabetic individuals. Nonetheless, the condition is frequently overlooked and disease awareness is limited both among patients and among physicians. Given recent epidemiological evidence, clinical practice guidelines recommend screening for NAFLD/MASLD and advanced liver fibrosis in patients with T2D. While many drugs are currently being tested for the treatment of NAFLD/MASLD, none of them have yet received formal approval from regulatory agencies. However, several classes of antidiabetic drugs (namely pioglitazone, sodium-glucose transporter 2 inhibitors, glucagon-like peptide 1 receptor agonists, and multi-agonists) have shown favorable effects in terms of liver enzymes, liver fat content and, in some occasions, on histologic features such as inflammation and fibrosis. Therefore, diabetologists have the opportunity to actively treat NAFLD/MASLD, with a concrete possibility of changing the natural history of the disease. In the present narrative review, we summarize evidence and clinical recommendations for NAFLD/MAFLD screening in the setting of T2D, as well as on the effect of currently available glucose-lowering drugs on hepatic endpoints.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10488336 | PMC |
http://dx.doi.org/10.3390/jcm12175597 | DOI Listing |
Diabetes
January 2025
Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
Diabetes is a major risk factor for cardiovascular disease, but the molecular mechanisms underlying diabetic vasculopathy have been elusive. Here we report that inositol hexakisphosphate kinase 1 (IP6K1) mediates hyperglycemia-induced endothelial senescence by rewiring the liver kinase B1 (LKB1) signaling from activating the adenosine monophosphate-activated protein kinase (AMPK) pathway to the p53 pathway. We found that hyperglycemia upregulated IP6K1, which disrupts the Hsp/Hsc70 and carboxyl terminus of Hsc70-interacting protein (CHIP)-mediated LKB1 degradation, leading to increased expression levels of LKB1.
View Article and Find Full Text PDFEJNMMI Res
January 2025
Department of Nuclear Medicine, University Hospital of Cologne, Kerpener Straße 62, 50937, Cologne, Germany.
Background: In clinical practice, several radiopharmaceuticals are used for PSMA-PET imaging, each with distinct biodistribution patterns. This may impact treatment decisions and outcomes, as eligibility for PSMA-directed radioligand therapy is usually assessed by comparing tumoral uptake to normal liver uptake as a reference. In this study, we aimed to compare tracer uptake intraindividually in various reference regions including liver, parotid gland and spleen as well as the respective tumor-to-background ratios (TBR) of different F-labeled PSMA ligands to today's standard radiopharmaceutical Ga-PSMA-11 in a series of patients with biochemical recurrence of prostate cancer who underwent a dual PSMA-PET examination as part of an individualized diagnostic approach.
View Article and Find Full Text PDFLiver Transpl
January 2025
Unit of Internal Medicine and Hepatology (UIMH), Department of Medicine - DIMED, University of Padova, Padova, Italy.
Radiol Phys Technol
January 2025
Graduate School of Medical Sciences, Kanazawa University, 5-11-80, Kodatsuno, Kanazawa, Ishikawa, 920-0942, Japan.
Liver and spleen volume measurements are important for early detection and monitoring of liver disease. However, alterations in liver and spleen volumes with postural changes, i.e.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Infectious Diseases, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
Emodin, as a natural active ingredient, has shown great application potential in the fields of medicine, food and cosmetics due to its unique pharmacological effects, such as anti-inflammatory, antioxidant, anti-cancer, etc. In recent years, with the development of science and technology and the increase of people's demand for natural medicine, emodin research has been paid more and more attention by the global scientific research community. The bibliometric analysis of emodin and the construction of knowledge map are still blank.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!