Background: Aspiration of stomach content or saliva in critical conditions-e.g., shock, intoxication, or resuscitation-can lead to acute lung injury. While various biomarkers in bronchoalveolar lavage fluids have been studied for diagnosing aspiration, none have been conclusively established as early indicators of lung damage. This study aims to evaluate the diagnostic value of pepsin, bile acid, and other biomarkers for detecting aspiration in an intensive care unit (ICU).

Materials And Methods: In this study, 50 ICU patients were enrolled and underwent intubation before admission. The evaluation of aspiration was based on clinical suspicion or documented instances of observed events. Tracheal secretion (TS) samples were collected within 6 h after intubation using sterile suction catheters. Additional parameters, including IL-6, pepsin, and bile acid, were determined for analysis. Pepsin levels were measured with an ELISA kit, while bile acid, uric acid, glucose, IL-6, and pH value in the tracheal secretion were analyzed using standardized lab methods.

Results: The 50 patients admitted to the ICU with various diagnoses. The median survival time for the entire cohort was 52 days, and there was no significant difference in survival between patients with aspiration pneumonia (AP) and those with other diagnoses ( = 0.69). Among the AP group, the average survival time was 50.51 days (±8.1 SD; 95% CI 34.63-66.39), while patients with other diagnoses had a mean survival time of 32.86 days (±5.1 SD; 95% CI 22.9-42.81); the survival group comparison did not yield statistically significant results. The presence of pepsin or bile acid in TS patients did not significantly impact survival or the diagnosis of aspiration. The -values for the correlations between pepsin and bile acid with the aspiration diagnosis were = 0.53 and > 0.99, respectively; thus, pepsin and bile acid measurements did not significantly affect survival outcomes or enhance the accuracy of diagnosing aspiration pneumonia.

Conclusions: The early and accurate diagnosis of aspiration is crucial for optimal patient care. However, based on this study, pepsin concentration alone may not reliably indicate aspiration, and bile acid levels also show limited association with the diagnosis. Further validation studies are needed to assess the clinical usefulness and reliability of gastric biomarkers in diagnosing aspiration-related conditions. Such future studies would provide valuable insights for improving aspiration diagnosis and enhancing patient care.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10487459PMC
http://dx.doi.org/10.3390/jcm12175466DOI Listing

Publication Analysis

Top Keywords

bile acid
32
pepsin bile
24
aspiration
12
diagnosis aspiration
12
survival time
12
acid
9
pepsin
8
bile
8
accurate diagnosis
8
icu patients
8

Similar Publications

Deficiency of Epithelial PIEZO1 Alleviates Liver Steatosis Induced by High-Fat Diet in Mice.

Int J Biol Sci

January 2025

Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.

PIEZO1 has been found to play a vital role in regulating intestinal epithelial cells (IEC) function and maintaining intestinal barrier in recent years. Therefore, IEC PIEZO1 might exert a significant impact on liver metabolism through the gut-liver axis, but there is no research on this topic currently. Classic high-fat diet (HFD) model and mice with IEC-specific deficiency of PIEZO1 ( ) were used to explore the problem.

View Article and Find Full Text PDF

Alterations in bile acid profile and pathways contribute to hepatic inflammation in cancer cachexia, a syndrome worsening the prognosis of cancer patients. As the gut microbiota impinges on host metabolism through bile acids, the current study aimed to explore the functional contribution of gut microbial dysbiosis to bile acid dysmetabolism and associated disorders in cancer cachexia. Using three mouse models of cancer cachexia (the C26, MC38 and HCT116 models), we evidenced a reduction in the hepatic levels of several secondary bile acids, mainly taurodeoxycholic (TDCA).

View Article and Find Full Text PDF

Host metabolism balances microbial regulation of bile acid signalling.

Nature

January 2025

Department of Chemistry and Chemical Biology, Boyce Thompson Institute, Cornell University, Ithaca, NY, USA.

Metabolites derived from the intestinal microbiota, including bile acids (BA), extensively modulate vertebrate physiology, including development, metabolism, immune responses and cognitive function. However, to what extent host responses balance the physiological effects of microbiota-derived metabolites remains unclear. Here, using untargeted metabolomics of mouse tissues, we identified a family of BA-methylcysteamine (BA-MCY) conjugates that are abundant in the intestine and dependent on vanin 1 (VNN1), a pantetheinase highly expressed in intestinal tissues.

View Article and Find Full Text PDF

SLC10A7 regulates O-GalNAc glycosylation and Ca homeostasis in the secretory pathway: insights into SLC10A7-CDG.

Cell Mol Life Sci

January 2025

Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale Et Fonctionnelle, 59000, Lille, France.

Glycans are known to be fundamental for many cellular and physiological functions. Congenital disorders of glycosylation (CDG) currently encompassing over 160 subtypes, are characterized by glycan synthesis and/or processing defects. Despite the increasing number of CDG patients, therapeutic options remain very limited as our knowledge on glycan synthesis is fragmented.

View Article and Find Full Text PDF

The rising pandemic of obesity has received significant attention. Yet, more safe and effective targeted strategies must be used to mitigate its impact on individual health and the global disease burden. While the health benefits of resistant starch (RS) are well-documented, the role of RT-90 (a phosphate-modified tapioca RS containing 90.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!