Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Celiac disease (CD) is a lifelong chronic autoimmune systemic disease that primarily affects the small bowel of genetically susceptible individuals. The diagnostics of adult CD currently rely on specific serology and the histological assessment of duodenal mucosa on samples taken by upper digestive endoscopy. Because of several pitfalls associated with duodenal biopsy sampling and histopathology, and considering the pediatric no-biopsy diagnostic criteria, a biopsy-avoiding strategy has been proposed for adult CD diagnosis also. Several endoscopic changes have been reported in the duodenum of CD patients, as markers of villous atrophy (VA), with good correlation with serology. In this setting, an opportunity lies in the automated detection of these endoscopic markers, during routine endoscopy examinations, as potential case-finding of unsuspected CD. We collected duodenal endoscopy images from 18 CD newly diagnosed CD patients and 16 non-CD controls and applied machine learning (ML) and deep learning (DL) algorithms on image patches for the detection of VA. Using histology as standard, high diagnostic accuracy was seen for all algorithms tested, with the layered convolutional neural network (CNN) having the best performance, with 99.67% sensitivity and 98.07% positive predictive value. In this pilot study, we provide an accurate algorithm for automated detection of mucosal changes associated with VA in CD patients, compared to normally appearing non-atrophic mucosa in non-CD controls, using histology as a reference.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486915 | PMC |
http://dx.doi.org/10.3390/diagnostics13172780 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!