A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Computer-Based Diagnosis of Celiac Disease by Quantitative Processing of Duodenal Endoscopy Images. | LitMetric

Computer-Based Diagnosis of Celiac Disease by Quantitative Processing of Duodenal Endoscopy Images.

Diagnostics (Basel)

Department of Electronics and Digital Technologies, Polytech Nantes, 44300 Nantes, France.

Published: August 2023

Celiac disease (CD) is a lifelong chronic autoimmune systemic disease that primarily affects the small bowel of genetically susceptible individuals. The diagnostics of adult CD currently rely on specific serology and the histological assessment of duodenal mucosa on samples taken by upper digestive endoscopy. Because of several pitfalls associated with duodenal biopsy sampling and histopathology, and considering the pediatric no-biopsy diagnostic criteria, a biopsy-avoiding strategy has been proposed for adult CD diagnosis also. Several endoscopic changes have been reported in the duodenum of CD patients, as markers of villous atrophy (VA), with good correlation with serology. In this setting, an opportunity lies in the automated detection of these endoscopic markers, during routine endoscopy examinations, as potential case-finding of unsuspected CD. We collected duodenal endoscopy images from 18 CD newly diagnosed CD patients and 16 non-CD controls and applied machine learning (ML) and deep learning (DL) algorithms on image patches for the detection of VA. Using histology as standard, high diagnostic accuracy was seen for all algorithms tested, with the layered convolutional neural network (CNN) having the best performance, with 99.67% sensitivity and 98.07% positive predictive value. In this pilot study, we provide an accurate algorithm for automated detection of mucosal changes associated with VA in CD patients, compared to normally appearing non-atrophic mucosa in non-CD controls, using histology as a reference.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486915PMC
http://dx.doi.org/10.3390/diagnostics13172780DOI Listing

Publication Analysis

Top Keywords

celiac disease
8
duodenal endoscopy
8
endoscopy images
8
automated detection
8
non-cd controls
8
computer-based diagnosis
4
diagnosis celiac
4
disease quantitative
4
quantitative processing
4
duodenal
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!