Berries are highly perishable and susceptible to spoilage, resulting in significant food and economic losses. The use of chemicals in traditional postharvest protection techniques can harm both human health and the environment. Consequently, there is an increasing interest in creating environmentally friendly solutions for postharvest protection. This article discusses various approaches, including the use of "green" chemical compounds such as ozone and peracetic acid, biocontrol agents, physical treatments, and modern technologies such as the use of nanostructures and molecular tools. The potential of these alternatives is evaluated in terms of their effect on microbial growth, nutritional value, and physicochemical and sensorial properties of the berries. Moreover, the development of nanotechnology, molecular biology, and artificial intelligence offers a wide range of opportunities to develop formulations using nanostructures, improving the functionality of the coatings by enhancing their physicochemical and antimicrobial properties and providing protection to bioactive compounds. Some challenges remain for their implementation into the food industry such as scale-up and regulatory policies. However, the use of sustainable postharvest protection methods can help to reduce the negative impacts of chemical treatments and improve the availability of safe and quality berries.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486450PMC
http://dx.doi.org/10.3390/foods12173159DOI Listing

Publication Analysis

Top Keywords

postharvest protection
12
nano technological
4
technological frontiers
4
frontiers sustainable
4
sustainable platform
4
postharvest
4
platform postharvest
4
postharvest preservation
4
preservation berry
4
berry fruits
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!