Severity: Warning
Message: file_get_contents(https://...@remsenmedia.com&api_key=81853a771c3a3a2c6b2553a65bc33b056f08&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
CuSO is the most commonly used feed additive in pig production at present, but long-term ingestion of excessive copper would lead to chronic copper toxicity. High copper could reduce the reproductive efficiency of sows and seriously affect the development of the pig industry. Quercetin (QUE), a powerful antioxidant, reduces toxicity of a number of heavy metals. Porcine granulosa cells (pGCs) are crucial to the fate of follicle development. The present study found that high concentrations of CuSO induced ROS production, which resulted in decreased mRNA expression of antioxidant-related genes , , and and increased mRNA expression of , , and . The protein expression of antioxidant enzymes SOD2 and HO-1 decreased. Moreover, the concentration of MDA increased, the activity of CAT decreased, and the content of GSH decreased. After high copper treatment, the mitochondrial membrane potential (MMP) was decreased and the morphological structure was changed. However, the combined treatment with Quercetin (QUE) reversed these changes, and the level of cellular oxidative stress decreased. Therefore, we conclude that high copper has oxidative toxicity to pGCs, and QUE could remove the ROS induced by high copper, protect mitochondria from oxidative stress damage, and improve the function of pGCs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486440 | PMC |
http://dx.doi.org/10.3390/ani13172745 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!