This study investigates the impact of natural resource exploitation on environmental sustainability in Southeast Asian economies, while testing the Environmental Kuznets Curve (EKC) inverted U-shaped hypothesis, a model which suggests an initial increase in environmental degradation with economic growth followed by a decrease at a certain level of income. Utilizing World Development Indicators data from 1995 to 2018, the research dissects the long-term influence of various resource rents, namely coal, oil, and forest. The research highlights the indispensable role of renewable energy in maintaining ecological balance. Results indicate that while coal rent exacerbates environmental degradation, forest and oil rents prove eco-friendly, although this is only confirmed in fully modified OLS estimation. The study underscores the importance of forest rents in achieving environmental sustainability. Renewable energy emerges as vital for promoting sustainable low-carbon practices. In line with the EKC hypothesis, the study finds that economic growth initially increases carbon emissions, but eventually reduces them. It calls for appropriate measures to manage resource exploitation, ensure renewable energy availability, alleviate energy poverty, and curb deforestation, thereby mitigating ecological damage.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11356-023-29605-3DOI Listing

Publication Analysis

Top Keywords

renewable energy
12
resource rents
8
southeast asian
8
asian economies
8
resource exploitation
8
environmental sustainability
8
environmental degradation
8
economic growth
8
environmental
6
individual resource
4

Similar Publications

Effect of Temperature on Condensed State Structure and Conductivity Characteristics of Micron-Level Biaxially Oriented Polypropylene Films.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, North China Electric Power University, Beijing 102206, China.

Polymer-based dielectric films are increasingly demanded for devices under high electric fields used in new energy vehicles, photovoltaic grid connections, oil and gas exploration, and aerospace. However, leakage current is one of the significant factors limiting the improvement of the insulation performance. This paper tested the leakage current and condensed state structure characteristics of biaxially oriented polypropylene (BOPP) films and obtained the nonlinear characteristics of leakage current of BOPP films in the range of 40-440 V/μm and 40-110 °C.

View Article and Find Full Text PDF

Evaluating Machine Learning and Deep Learning models for predicting Wind Turbine power output from environmental factors.

PLoS One

January 2025

Renewable Energy Science and Engineering Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Beni-Suef, Egypt.

This study presents a comprehensive comparative analysis of Machine Learning (ML) and Deep Learning (DL) models for predicting Wind Turbine (WT) power output based on environmental variables such as temperature, humidity, wind speed, and wind direction. Along with Artificial Neural Network (ANN), Long Short-Term Memory (LSTM), Recurrent Neural Network (RNN), and Convolutional Neural Network (CNN), the following ML models were looked at: Linear Regression (LR), Support Vector Regressor (SVR), Random Forest (RF), Extra Trees (ET), Adaptive Boosting (AdaBoost), Categorical Boosting (CatBoost), Extreme Gradient Boosting (XGBoost), and Light Gradient Boosting Machine (LightGBM). Using a dataset of 40,000 observations, the models were assessed based on R-squared, Mean Absolute Error (MAE), and Root Mean Square Error (RMSE).

View Article and Find Full Text PDF

Polymer material innovations for a green hydrogen economy.

Chem Commun (Camb)

January 2025

Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore 627833, Republic of Singapore.

Polymeric materials are ubiquitous in modern life. Similar to many other technological applications, polymer materials are essential in advancing the green hydrogen economy, offering solutions for hydrogen production, storage, transport, and utilization. In production, polymeric proton exchange membranes in water electrolysers enable efficient green hydrogen generation using renewable energy.

View Article and Find Full Text PDF

A Fish-Gill-Inspired Biomimetic Multiscale-Ordered Hydrogel-Based Solar Water Evaporator for Highly Efficient Salt-Rejecting Seawater Desalination.

ACS Appl Mater Interfaces

January 2025

State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, China.

Solar energy-driven steam generation is a renewable, energy-efficient technology that can alleviate the global clean water shortage through seawater desalination. However, the contradiction between resistance to salinity accretion and maintaining high water evaporation properties remains a challenging bottleneck. Herein, we have developed a biomimetic multiscale-ordered hydrogel-based solar water evaporator for efficient seawater desalination.

View Article and Find Full Text PDF

Distinct Promotion of PEC Water Oxidation of TaO/α-FeO/Co-Ni PBA via Coupling Ni 3d with O 2p.

Inorg Chem

January 2025

Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing 210093, P. R. China.

The development of robust and effective photoanodes is crucial for photoelectrochemical hydrogen production via total water splitting. Herein, the TaO/α-FeO/Co-Ni PBA (TFPB-1) photoanode was constructed by the compositing n-type TaO and n-type α-FeO followed by the deposition of p-type Co-Ni PBA. The IPCE of TFPB-1 was increased to 35.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!