A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A review of the machine learning datasets in mammography, their adherence to the FAIR principles and the outlook for the future. | LitMetric

The increasing rates of breast cancer, particularly in emerging economies, have led to interest in scalable deep learning-based solutions that improve the accuracy and cost-effectiveness of mammographic screening. However, such tools require large volumes of high-quality training data, which can be challenging to obtain. This paper combines the experience of an AI startup with an analysis of the FAIR principles of the eight available datasets. It demonstrates that the datasets vary considerably, particularly in their interoperability, as each dataset is skewed towards a particular clinical use-case. Additionally, the mix of digital captures and scanned film compounds the problem of variability, along with differences in licensing terms, ease of access, labelling reliability, and file formats. Improving interoperability through adherence to standards such as the BIRADS criteria for labelling and annotation, and a consistent file format, could markedly improve access and use of larger amounts of standardized data. This, in turn, could be increased further by GAN-based synthetic data generation, paving the way towards better health outcomes for breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10491669PMC
http://dx.doi.org/10.1038/s41597-023-02430-6DOI Listing

Publication Analysis

Top Keywords

fair principles
8
breast cancer
8
review machine
4
machine learning
4
learning datasets
4
datasets mammography
4
mammography adherence
4
adherence fair
4
principles outlook
4
outlook future
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!