Reactive nitrogen (Nr) released to the environment is a cause of multiple environmental threats. While Nr flows are often only analyzed in an agricultural context, consumption and emission takes place in the urban environment, and opportunities for Nr recycling and effective policy implementation for mitigation often appear in cities. Since little information is available on the bigger picture of Nr flows through the urban environment, these opportunities often remain unexploited. Here we developed a framework to model Nr pathways through urban and surrounding areas, which we applied to four test areas (Beijing and Shijiazhuang (China), Vienna (Austria), and Zielona Góra (Poland)). Using indicators such as recycling rates and Nr surplus, we estimated environmental risks and recycling potentials based on Nr flows and their entry and exit points. Our findings show marked differences between the core and surrounding areas of each city, with the former being a site of Nr consumption with largest flows associated with households, and the latter a site of (agricultural) production with largest flows associated with industry (fertilizers) and urban plants. As a result, Nr transgresses the core areas in a rather linear manner with only 0-5 % being re-used, with inputs from Nr contained in food and fuels and outputs most commonly as non-reactive N emissions to the atmosphere from wastewater treatment and combustion processes. While the peri-urban areas show a higher Nr recycling rate (6-14 %), Nr accumulation and emissions from cultivated land pose significant environmental challenges, indicating the need for mitigation measures. We found potential to increase nitrogen use efficiency through improved Nr management on cultivated areas and to increase Nr recycling using urine and sewage sludge as synthetic fertilizer substitutes. Hence our framework for urban nitrogen budgets not only allows for consistent budgeting but helps identify common patterns, potentially harmful flows and Nr recycling potential.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166827 | DOI Listing |
Anal Chem
January 2025
School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang150090, P. R. China.
Newborn screening for acylcarnitine-related inherited metabolic diseases (IMDs) is a critical test after birth. Conventional extraction methods require shaking with heating, centrifugation, nitrogen blowing, redissolution, etc., and the total time is more than 1 h.
View Article and Find Full Text PDFSci Rep
January 2025
Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto, 606-8585, Japan.
Phytotoxic air pollutants such as atmospheric nitrogen dioxide (NO) are among the major stresses affecting tree photosynthesis in urban areas. We clarified the relationship between NO concentrations and photosynthetic function for three major urban trees, Prunus × yedoensis, Rhododendron pulchrum, and Ginkgo biloba, planted in Kyoto and surrounding cities, combining our published data and new data collected from 2020 to 2023. High NO increased long-term water use efficiency for all species.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Key Laboratory of Urban Environment and Health, Ningbo Urban Environment Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
Pesticide application is essential for stabilizing agricultural production. However, the effects of increasing pesticide diversity on soil microbial functions remain unclear, particularly under varying nitrogen (N) fertilizer management practices. In this study, we investigated the stochasticity of soil microbes and multitrophic networks through amplicon sequencing, assessed soil community functions related to carbon (C), N, phosphorus (P), and sulfur (S) cycling, and characterized the dominant bacterial life history strategies via metagenomics along a gradient of increasing pesticide diversity under two N addition levels.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Department of Basic Education, University of Education, Winneba, Ghana.
Urbanization and industrialization have drastically increased ambient air pollution in urban areas globally from vehicle emissions, solid fuel combustion and industrial activities leading to some of the worst air quality conditions. Air pollution in Ghana causes approximately 28,000 premature deaths and disabilities annually, ranking as a leading cause of mortality and disability-adjusted life years. This study evaluated the annual concentrations of PM NO and O in the ambient air of 57 cities in Ghana for two decades using historical and forecasted data from satellite measurements.
View Article and Find Full Text PDFToxics
December 2024
Department of Public Health, University of Massachusetts Lowell, Lowell, MA 01854, USA.
Nitrogen dioxide (NO) and particulate matter of 2.5 microns (PM) are air pollutants that impact health, especially among vulnerable populations with respiratory disease. This study identifies factors influencing indoor NO and PM in low-income households of older adults with asthma who use gas stoves in Lowell, Massachusetts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!