Suspended sediment concentration (SSC) in water increases temperature and turbidity, limits the photosynthesis of aquatic plants, and reduces biologically available oxygen. It is important to study SSC in the coastal waters of the Arabian Gulf. Thus, this study mapped the SSC of coastal water between Al Arish and Al Ghariyah in northern Qatar using the spectral bands of the MultiSpectral Imager (MSI) of Sentinel-2 by calculating the Normalized Difference Suspended Sediment Index and Normalized Suspended Material Index. The results are studied using the Normalized Difference Turbidity Index and Modified Normalized Difference Water Index. The mapping of SSC in the water using NDSSI showed the presence of a high concentration of suspended sediments between Al Arish and Al Mafjar and a low concentration between Al Mafjar and Al Ghariyah. The mapping of NSMI showed values between 0.012 (clear water) and 0.430 (more suspended material) for the occurrence of suspended materials and supported the results of NDSSI. The study of turbidity using an NDTI image showed turbidity index values ranging from -0.44 (clear water) to 0.12 (high turbidity) and confirmed the occurrence and distribution of suspended sediments and materials in the water. The MNDWI image was able to discriminate clear water with bright pixels from silty sand and mud flats. The relationships between NDSSI, NSMI, and NDTI were correlated with in-situ measurements and studied to find suitable indices to map SSC. Regression analyses showed the strongest relationship between NSMI and NDTI (R = 0.95) next to NDSSI and NDTI, where NDTI had the strongest effect on NDSSI (R = 0.86). The satellite data results were evaluated by studying the physical parameters and spatial distribution of suspended sediments in the surface and bottom waters. In addition, the grain size distributions, mineral identification, and chemical element concentrations in the bottom sediment samples were studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166875 | DOI Listing |
Ying Yong Sheng Tai Xue Bao
October 2024
School of Fishery, Zhejiang Ocean University, Zhoushan 316000, Zhejiang, China.
Mangrove forests are crucial coastal "blue carbon" ecosystems, known for their significant carbon sequestration capabilities to "carbon neutrality" and mitigating global climate change. We used Pb radioisotope dating to analyze sedimentation rates in the sediments of the Oujiang River Estuary mangrove forest, to calculate organic carbon burial rate, and to assess the characteristics and sources of organic carbon burial. The results showed that the average total organic carbon content in the sediments was 1.
View Article and Find Full Text PDFEnviron Pollut
December 2024
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
In addition to traditional organophosphate esters (tOPEs), emerging organophosphate esters (eOPEs) have increasingly been detected in the environment, but their risks remain unclear. This study detected 12 tOPEs and 7 eOPEs in surface water, sediment, and suspended particulate matter (SPM) samples from important aquatic habitats and drinking water sources in Yibin (YB), Yichang (YC), Shanghai (SH), and Poyang Lake (PY) within the Yangtze River basin. The total concentration of OPEs (ΣOPEs) in surface water, sediment, and SPM from these four regions were 22.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Universidad Autónoma de Santo Domingo, Facultad de Ciencias, Zona Universitaria, Distrito Nacional, Santo Domingo, Dominican Republic.
Impacts of the acid mine drainage (AMD) remediation are investigated on the largest gold mine in Latin America, located in the Dominican Republic. Geochemical analysis of suspended matter in water performed in 2022 on water bodies located downstream to the mine, namely, the Margajita River and Lake Hatillo, are compared with analyses made in 2007, before the AMD remediation. The results for the Margajita River show a strong decrease in heavy metal and metalloid concentrations in the dissolved phase for Al, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Cd, Sb, and Pb (between 89.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China. Electronic address:
NO-N transformation, the vital biological process, determines nitrogen removal and retention in aquatic environment. Suspended sediment (SPS) ubiquitous in freshwater ecosystems can accelerate the transitions from aerobic to anoxic states, inevitably impacting NO-N transformation. To elaborate on the microbial mechanism by which SPS content affected NO-N transformation, we explored nitrogen removal and retention, microbial communities, co-occurrence networks, and electron transfer behavior under different SPS content during the aerobic-anoxic transition.
View Article and Find Full Text PDFSci Total Environ
December 2024
Basque Centre for Climate Change (BC3), Sede Building, Campus EHU/UPV, Leioa, Bizkaia, Spain.
Tidal marshes are coastal systems that provide valuable ecosystem services, highlighting coastal protection and carbon burial. For centuries, these dynamic ecosystems have kept pace with sea level rise through organic and mineral matter accumulation. In the current situation of accelerated sea-level rise and changes in suspended sediment concentrations, the evolution of these systems has gained special attention across scientific fields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!