Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The plant's response to phosphorus (P) starvation suppresses its immunity and regulates rhizosphere microbial colonization. However, the impact of various P forms on plant disease resistance and microbial composition remains underreported. This paper examines the soybean rhizosphere microbiome facing co-stress from Fusarium oxysporum and diverse P forms. Macrogenomic analysis evaluates whether P addition enhances plant disease resistance and rhizosphere microbial function, and if such effects relate to P forms. Results show that different P forms mitigate F. oxysporum-induced plant inhibition by promoting P turnover. P forms predominantly affect microbial composition, followed by soil and plant properties. In soybean, the phosphate transport strategy (ugpA/Q) was selected to maintain high P to enhance immunity in the KHPO treatment, while organo-P mineralization (phnH/F/W/G) was selected for superphosphate treatment. The Frankiales, a P-turnover microorganism, copiotrophic microorganisms, and indicator bacteria of plant properties, initially increase after F. oxysporum inoculation and then decrease post P addition, regardless of P forms. Additionally, the rhizosphere microbial community's metabolic activities and compounds significantly aid soybean defense against F. oxysporum, with functional types depending on P forms. Therefore, these findings establish a novel approach to enhance host defense against soil-borne diseases through P nutrition regulation to mediate host-driven metabolic activities of microbial communities.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.166899 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!