A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Drivers and mechanisms of spontaneous plant community succession in abandoned PbZn mining areas in Yunnan, China. | LitMetric

Drivers and mechanisms of spontaneous plant community succession in abandoned PbZn mining areas in Yunnan, China.

Sci Total Environ

Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Sciences, Yunnan University, Kunming 650091, China; Yunnan International Joint Research Center of Plateau Lake Ecological Restoration and Watershed Management, Yunnan University, Kunming 650091, China. Electronic address:

Published: December 2023

The drivers and mechanisms underlying succession and the spontaneous formation of plant communities in mining wasteland remain largely unknown. This study investigated the use of nature-based restoration to facilitate the recovery of viable plant communities in mining wasteland. It was found that scientific analyses of spontaneously formed plant communities in abandoned mining areas can provide insights for nature-based restoration. A chronosequence ("space for time") approach was used to establish sites representing three successional periods with six successional stages, and 90 quadrats were constructed to investigate changes in plant species and functional diversity during succession in abandoned PbZn mining areas. A total of 140 soil samples were collected to identify changes in soil properties, including plant nutrient and heavy metal concentrations. Then, this paper used structural equation models to analyze the mechanisms that drive succession. It was found that the functional diversity of plant communities fluctuated substantially during succession. Species had similar functional traits in early and mid-succession, but traits tended to diverge during late succession. Soil bulk density and soil organic matter gradually increased during succession. Total nitrogen (N), pH, and soil Zn concentrations first increased and then decreased during succession. Concentrations of Mn and Cd gradually decreased during succession. During early succession, soil organic matter was the key factor driving plant colonization and succession. During mid-succession, soil Zn functioned as an environmental filter factor limiting the rates of succession in mining wasteland communities. During late succession, soil bulk density and competition for nutrient resources contributed to more balanced differentiation among plant species. This thesis proposed that a nature-based strategy for the stabilization of abandoned mining lands could facilitate effective plant community restoration that promotes ecosystem services and functioning.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2023.166871DOI Listing

Publication Analysis

Top Keywords

plant communities
16
succession
13
mining areas
12
mining wasteland
12
succession soil
12
plant
10
drivers mechanisms
8
plant community
8
succession abandoned
8
abandoned pbzn
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!