New insights into the genetic manipulation of the R2R3-MYB and CHI gene families on anthocyanin pigmentation in Petunia hybrida.

Plant Physiol Biochem

Institute of Horticultural Production Systems, Floriculture, Faculty of Natural Sciences, Leibniz University Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany.

Published: October 2023

Several R2R3-MYB genes control anthocyanin pigmentation in petunia, and ANTHOCYANIN-2 (AN2) is treated as the main player in petal limbs. However, the actual roles of R2R3-MYBs in the coloration of different floral tissues in the so called "darkly-veined" petunias are still not clear. The genetic background and expression of AN2 paralogs from various petunias with different color patterns were identified. All "darkly-veined" genotypes have the identical mutation in the AN2 gene, but express a different functional paralog - ANTHOCYANIN-4 (AN4) - abundantly in flowers. Constitutive overexpression of PhAN4 in this petunia resulted not only in a fully colored flower but also in a clearly visible pigmentation in the green tissue and roots, which can be rapidly increased by stress conditions. Suppression of AN4 gene resulted in discolored petals and whitish anthers. Interestingly, when a similar white flower phenotype was achieved by knockout of an essential structural gene of anthocyanin biosynthesis - CHALCONE ISOMERASE-A (CHI-A) - the plant responded directly by upregulating of another paralogs - DEEP PURPLE (DPL) and PURPLE HAZE (PHZ). Moreover, we also found that CHI-B can partially substitute for CHI-A in anthers, but not in vegetative tissues. Further, no significant effects on the longevity of white or enhanced colored flowers were observed compared with the wild type. We concluded that endogenous up-regulation of AN4 leads to the restoration of petal color in the "darkly-veined" phenotypes as a result of the breeding process under human selection, and CHI-B is a backup for CHI-A acitvity in some floral tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.plaphy.2023.108000DOI Listing

Publication Analysis

Top Keywords

anthocyanin pigmentation
8
pigmentation petunia
8
floral tissues
8
insights genetic
4
genetic manipulation
4
manipulation r2r3-myb
4
r2r3-myb chi
4
gene
4
chi gene
4
gene families
4

Similar Publications

A novel, sustainable time-temperature indicator (TTI) ink based on natural pigments is introduced for food freshness monitoring. The ink, composed of hydroxyethyl cellulose (HEC), Clitoria ternatea anthocyanin, and N-hydroxyphthalimide (NHPI), was applied to art paper using screen printing. The inks were characterized through FT-IR, particle size analysis, and rheological measurements, with optimal performance achieved at Clitoria ternatea anthocyanin to NHPI ratios of 9:1 and 7:1.

View Article and Find Full Text PDF

Drought stress poses a serious threat to agricultural productivity worldwide. This study investigated the mitigative effects of exogenous spermidine on drought stressed yarrow ( L.).

View Article and Find Full Text PDF

Blanching-Induced Changes in Polyphenol Oxidase, Antioxidants and Phenolic Profile of Mangosteen Pericarp.

Food Technol Biotechnol

December 2024

Department of Food Technology, Faculty of Food Science and Technology, Jalan Universiti 1, 43400, Universiti Putra Malaysia, Selangor, Malaysia.

Research Background: Anthocyanin pigments in mangosteen pericarp can serve as natural colourants; however, their stability is compromised by enzymatic browning caused by polyphenol oxidase (PPO). Thus, this study aims to investigate how hot water and steam blanching affect the PPO activity, phenolic profile and antioxidant properties of mangosteen pericarp.

Experimental Approach: Fresh mangosteen pericarp was blanched in hot water or steam at 100 °C for 0, 30, 60, 90 and 120 s and the residual PPO activity, total phenolic content (TPC), total anthocyanins, antioxidant activity, browning index and colour properties were evaluated.

View Article and Find Full Text PDF

Post-transcriptional and post-translational regulation of anthocyanin biosynthesis in sweetpotato by Ib-miR2111 and IbKFB: Implications for health promotion.

J Adv Res

January 2025

Shanxi Engineering Research Center for Genetics and Metabolism of Special Crops, College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, China. Electronic address:

Introduction: Sweetpotato (Ipomoea batatas (L.) Lam.) is a genetically intricate hexaploid crop.

View Article and Find Full Text PDF

Comprehensive analysis of metabolomics and transcriptomics reveals varied tepal pigmentation across Gloriosa varieties.

BMC Plant Biol

January 2025

Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518000, China.

Gloriosa L. possesses exceptional ornamental value, with its floral hues exhibiting a wide range of variations. In this study, we employed sophisticated colorimetry, Ultra Performance Liquid Chromatography-Tandem Mass Spectrometry (UPLC-MS/MS), and transcriptome sequencing to investigate the phenotypic expression of tepal colors, the composition of carotenoids and anthocyanins, and the differential gene expression in four Gloriosa varieties during their full bloom phase.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!