Background: Despite the morbidity associated with acute atrial fibrillation (AF), no models currently exist to forecast its imminent onset. We sought to evaluate the ability of deep learning to forecast the imminent onset of AF with sufficient lead time, which has important implications for inpatient care.

Methods: We utilized the Physiobank Long-Term AF Database, which contains 24-h, labeled ECG recordings from patients with a history of AF. AF episodes were defined as ≥5 min of sustained AF. Three deep learning models incorporating convolutional and transformer layers were created for forecasting, with two models focusing on the predictive nature of sinus rhythm segments and AF epochs separately preceding an AF episode, and one model utilizing all preceding waveform as input. Cross-validated performance was evaluated using area under time-dependent receiver operating characteristic curves (AUC(t)) at 7.5-, 15-, 30-, and 60-min lead times, precision-recall curves, and imminent AF risk trajectories.

Results: There were 367 AF episodes from 84 ECG recordings. All models showed average risk trajectory divergence of those with an AF episode from those without ∼15 min before the episode. Highest AUC was associated with the sinus rhythm model [AUC = 0.74; 7.5-min lead time], though the model using all preceding waveform data had similar performance and higher AUCs at longer lead times.

Conclusions: In this proof-of-concept study, we demonstrated the potential utility of neural networks to forecast the onset of AF in long-term ECG recordings with a clinically relevant lead time. External validation in larger cohorts is required before deploying these models clinically.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10841237PMC
http://dx.doi.org/10.1016/j.jelectrocard.2023.08.011DOI Listing

Publication Analysis

Top Keywords

ecg recordings
12
atrial fibrillation
8
forecast imminent
8
imminent onset
8
deep learning
8
lead time
8
sinus rhythm
8
preceding waveform
8
models
5
lead
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!