A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Photodegradation of halogenated organic disinfection by-products: Decomposition and reformation. | LitMetric

Photodegradation of halogenated organic disinfection by-products: Decomposition and reformation.

Water Res

Department of Environmental Engineering and Earth Science, Clemson University, SC, 29634, USA. Electronic address:

Published: October 2023

In this study, the photodegradation of 33 different DBPs (trihalomethanes, haloacetic acids, haloacetaldehydes, and haloacetonitriles) and TOX with low pressure UV light and the subsequent reformation of DBPs with chlorine and monochloramine were investigated. Results indicated that photodegradation followed the order of TOI > TOBr > TOCl, and treated surface water with low SUVA background did not impact the photodegradation of highly UV susceptible DBPs such as triiodomethane (TIM), diiodobromomethane (DIBM), tribromomethane (TBM). The mass balance results of chloride, bromide and iodide showed that the main photodegradation mechanism of TOBr and TOI was dehalogenation supported by halide releases (i.e., Cl, Br and/or I ion). In addition, the photodegradation removal effect was higher, when brominated DBPs formation was high. Although low pressure UV light effectively removed halogenated organic DBPs, subsequent use of disinfectants (Cl and NHCl) reformed photodegraded DBPs, and the overall DBPs concentrations were increased, which suggested that the released Br and I ions will reform DBPs in distribution systems, with oxidants present or added (e.g., booster chlorination) in distribution systems. This study showed that although UV photodegradation will reduce halogenated organic DBPs in distribution systems, especially more toxic iodinated and brominated DBPs, it will be a more effective technology towards the end of the distribution system or a point of entry solution rather than in distribution system with post-disinfection and residence time.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2023.120565DOI Listing

Publication Analysis

Top Keywords

halogenated organic
12
distribution systems
12
dbps
10
study photodegradation
8
low pressure
8
pressure light
8
brominated dbps
8
organic dbps
8
dbps distribution
8
distribution system
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!