Plastic pollution is a critical environmental issue with far-reaching and not yet fully explored consequences. This study uncovered a significant source of plastic contamination arising from improper application and management of expanded polystyrene (EPS) utilised as expansion joints at a construction site near the coast of Antofagasta, Chile. Through meticulous field observations and calculations, we estimate that a staggering 82.9 million EPS spheres have the potential to be released into the environment from the 7.62 m of this material used for the construction of this coastal promenade, constituting a chronic source of pollution. Despite the ongoing construction, we have already evidenced mechanical fragmentation and dispersion of EPS microplastic pollution in the surrounding natural environment. To our knowledge, this is the first study that documents misused construction materials contributing to plastic pollution. In addition to the EPS pollution, our findings reveal an alarming accumulation of litter - an acute pollution source - including plastic cups, bottles, carrier bags, and several other construction materials (e.g. plastic nets, films) that are exacerbating the pollution problems within the region and potentially endangering marine and terrestrial organisms. These observations highlight the urgent need for mitigating measures and intervention policies targeting construction-related plastic and microplastic pollution, along with a more robust regulatory framework for construction activities as well as adequate surveillance and enforcement.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.marpolbul.2023.115510 | DOI Listing |
Appl Microbiol Biotechnol
January 2025
Process Synthesis and Process Dynamics, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
The production of biodegradable and biobased polymers is one way to overcome the present plastic pollution while using cheap and abundant feedstocks. Polyhydroxyalkanoates are a promising class of biopolymers that can be produced by various microorganisms. Within the production process, batch-to-batch variation occurs due to changing feedstock composition when using waste streams, slightly different starting conditions, or biological variance of the microorganisms.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Pathology and Laboratory Medicine, The University of Kansas Medical Center, Kansas City, KS 66160, USA. Electronic address:
Plastics play a crucial role in modern life, but improper use and disposal have resulted in microplastics becoming widespread in the environment, raising significant concerns about both the environment and human health. Extensive research has explored the transformation mechanisms, bioaccumulation, ecological impacts, and health risks associated with microplastics. The present review first analyzes the migration, transformation, and degradation pathways of microplastics on a global scale, and then synthesizes current knowledge on the types, sources, and migration pathways of microplastics in soil, atmosphere, and aquatic environments, emphasizing transformation mechanisms like photo-aging and microbial degradation, and detailing their ecological and human health impacts.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Department of Public Health, China Medical University, Taichung City, Taiwan. Electronic address:
Marine litter and microplastics (MPs) represent pressing environmental challenges; however, the impact of marine litter on airborne MPs near marine litter hotspot remains unexplored. In this study, we simultaneously collected airborne MPs, weather factors, and air pollutants in a village near a marine litter hotspot across different seasons in Taiwan. Multiple methods were employed to evaluate whether the marine litter hotspot was a source of airborne MPs.
View Article and Find Full Text PDFEnviron Res
January 2025
Southern California Coastal Water Research Project, Costa Mesa, CA, 92626.
The concentration, character, and distribution of microplastics in coastal marine environments remain poorly understood, with most research focusing on the abundance of microplastics at the sea surface. To address this gap, we conducted one of the first comprehensive assessments of microplastic distribution through the marine water column and in the benthic sediment during the wet and dry season in the coastal waters of the San Pedro Shelf, Southern California, USA. Microplastic concentrations in the water column did not vary significantly across season but were significantly higher in nearshore environments and at the surface of the water column.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Center for Advanced New Materials, Engineering, and Emerging Technologies (CANMEET), University of San Agustin, 5000 Iloilo City, Philippines.
The plastic revolution's contribution to global pollution gives rise to microplastics (MPs), bearing a toll on the marine environment. Knowledge of mangrove exposure to MPs causing adverse effects has yet to be elucidated. Hence, the physiological responses of R.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!