The health of agroecosystems is subsiding unremittingly, and the over-use of chemical fertilizers is one of the key reasons. It is hypothesized that integrating biochar, a carbon (C)-rich product, would be an effective approach to reducing the uses of synthetic fertilizers and securing crop productivity through improving soil properties and nutrient cycling. The bamboo biochar at different quantities (4-12 Mg ha) and combinations with chemical fertilizers were tested in stevia (Stevia rebaudiana) farming in silty clay acidic soil. The integration of biochar at 8 Mg ha with 100% nitrogen (N), phosphorus (P), and potassium (K) produced statistically (p ≤ 0.05) higher leaf area index, dry leaf yield, and steviol glycosides yield by about 18.0-33.0, 25.8-44.9, and 20.5-59.4%, respectively, compared with the 100% NPK via improving soil physicochemical properties. Soil bulk density was reduced by 5-8% with biochar at ≥ 8 Mg ha, indicating the soil porosity was increased by altering the soil macrostructure. The soil pH was significantly (p ≤ 0.05) augmented with the addition of biochar alone or in the combination of N because of the alkaline nature of the used biochar (pH = 9.65). Furthermore, integrating biochar at 8 Mg ha with 100% NPK increased 22.7% soil organic C compared with the sole 100% NPK. The priming effect of applied N activates soil microorganisms to mineralize the stable C. Our results satisfy the hypothesis that adding bamboo biochar would be a novel strategy for sustaining productivity by altering soil physicochemical properties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.118872DOI Listing

Publication Analysis

Top Keywords

soil
12
altering soil
12
100% npk
12
integration biochar
8
acidic soil
8
soil properties
8
properties nutrient
8
chemical fertilizers
8
biochar
8
integrating biochar
8

Similar Publications

In recent years, there has been a global threat from emerging vector-borne diseases (VBD), despite the implementation of several vector control programs. Considering the benefits of bacterial pesticides, the present study aimed to isolate potential mosquitocidal bacteria from the various soil types collected from the Kasaragod (12.5°N, 75.

View Article and Find Full Text PDF

The Functional and Structural Succession of Mesic-Grassland Soil Microbiomes Beneath Decomposing Large Herbivore Carcasses.

Environ Microbiol

January 2025

Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.

Plant detritus is abundant in grasslands but decomposes slowly and is relatively nutrient-poor, whereas animal carcasses are labile and nutrient-rich. Recent studies have demonstrated that labile nutrients from carcasses can significantly alter the long-term soil microbial function at an ecosystem scale. However, there is a paucity of knowledge on the functional and structural response and temporal scale of soil microbiomes beneath large herbivore carcasses.

View Article and Find Full Text PDF

Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.

Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).

View Article and Find Full Text PDF

Soil microorganisms transform plant-derived C (carbon) into particulate organic C (POC) and mineral-associated C (MAOC) pools. While microbial carbon use efficiency (CUE) is widely recognized in current biogeochemical models as a key predictor of soil organic carbon (SOC) storage, large-scale empirical evidence is limited. In this study, we proposed and experimentally tested two predictors of POC and MAOC pool formation: microbial necromass (using amino sugars as a proxy) and CUE (by O-HO approach).

View Article and Find Full Text PDF

Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!