A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fast pyrolysis kinetics of waste tires and its products studied by a wireless-powered thermo-balance. | LitMetric

Fast pyrolysis kinetics of waste tires and its products studied by a wireless-powered thermo-balance.

J Hazard Mater

Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environmental Science & Technology, Dalian University of Technology, Dalian 116024, China. Electronic address:

Published: October 2023

Fast pyrolysis is commonly used in industrial reactors to convert waste tires into fine chemicals and fuels. However, current thermogravimetric analyzers are facing limitations that prevent the acquisition of kinetic information. To better understand the reaction kinetics, we designed a novel thermo-balance device that was capable of in-situ weight measurement during rapid heating. The results showed that the reaction rate substantially increased, with significant reductions in reaction time and apparent activation energy compared to slow pyrolysis. The change of reaction mechanism from the reaction order model to the nucleation and growth model was responsible for the increase in the degradation rate. Fast pyrolysis led to the generation of more trimers of isoprene as primary pyrolytic volatiles, which we further supported through density functional theory calculations. The findings suggested that fast pyrolysis has a higher chance of overcoming the high energy barrier to form trimers of isoprene. This comprehensive and in-depth understanding of fast pyrolysis kinetics and product distribution could reveal a more realistic process of waste pyrolysis, which benefited the industry.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhazmat.2023.132494DOI Listing

Publication Analysis

Top Keywords

fast pyrolysis
20
pyrolysis kinetics
8
waste tires
8
trimers isoprene
8
pyrolysis
6
fast
5
reaction
5
kinetics waste
4
tires products
4
products studied
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!