https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=37682978&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 3768297820231003
1944-825215372023Sep20ACS applied materials & interfacesACS Appl Mater InterfacesAmbient Processed rGO/Ti3CNTx MXene Thin Film with High Oxidation Stability, Photosensitivity, and Self-Cleaning Potential.440754408644075-4408610.1021/acsami.3c07972Solution-based processing offers advantages for producing thin films due to scalability, low cost, simplicity, and benignity to the environment. Here, we develop conductive and photoactivated self-cleaning reduced graphene oxide (rGO)/Ti3CNTx MXene thin films via spin coating under ambient conditions. The addition of a thin rGO layer on top of Ti3CNTx resulted in up to 45-fold improvement in the environmental stability of the film compared to the bare Ti3CNTx film. The optimized rGO/Ti3CNTx thin film exhibits an optical transmittance of 74% in the visible region of the spectrum and a sheet resistance of 19 kΩ/sq. The rGO/Ti3CNTx films show high rhodamine B discoloration activity upon light irradiation. Under UV irradiation, the electrically conductive MXene in combination with in situ formed semiconducting titanium oxide induces photogenerated charge carriers, which could potentially be used in photocatalysis. On the other hand, due to film transparency, white light irradiation can bleach the adsorbed dye via photolysis. This study opens the door for using MXene thin films as multifunctional coatings with conductive and potentially self-cleaning properties.PurbayantoMuhammad Abiyyu KenichiMAK0000-0002-0271-220XFaculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.BuryDominikaDFaculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.ChandelMadhuryaMFaculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.ShahrakZhila DehghanZDDepartment of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409 United States.MochalinVadym NVN0000-0001-7403-1043Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409 United States.Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409 United States.WójcikAnnaAPolish Academy of Sciences, Institute of Metallurgy and Materials Science, W. Reymonta 25, 30-059 Cracow, Poland.MoszczyńskaDorotaDFaculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.WojciechowskaAnitaA0000-0003-3207-1359Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.TabassumAnikaADepartment of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.NaguibMichaelM0000-0002-4952-9023Department of Physics and Engineering Physics, Tulane University, New Orleans, Louisiana 70118, United States.JastrzębskaAgnieszka MariaAMFaculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, Warsaw 02-507, Poland.engJournal Article20230908
United StatesACS Appl Mater Interfaces1015049911944-8244IMTi3CNTx MXeneconductivityphotocatalyticself-cleaningstabilityThe authors declare no competing financial interest.
2023981843202398184220239813552023926ppublish37682978PMC1052091210.1021/acsami.3c07972Ginley D. S.; Perkins J. D.. Transparent Conductors. In Handbook of transparent conductors; Springer: 2011; pp 1–25.Kafizas A.; Noor N.; Carmichael P.; Scanlon D. O.; Carmalt C. J.; Parkin I. P. Combinatorial Atmospheric Pressure Chemical Vapor Deposition of F: TiO2; the Relationship between Photocatalysis and Transparent Conducting Oxide Properties. Adv. Funct. Mater. 2014, 24 (12), 1758–1771. 10.1002/adfm.201301333.10.1002/adfm.201301333Jiamprasertboon A.; Powell M. J.; Dixon S. C.; Quesada-Cabrera R.; Alotaibi A. M.; Lu Y.; Zhuang A.; Sathasivam S.; Siritanon T.; Parkin I. P.; et al. Photocatalytic and Electrically Conductive Transparent Cl-Doped ZnO Thin Films via Aerosol-Assisted Chemical Vapour Deposition. J. Mater. Chem. A 2018, 6 (26), 12682–12692. 10.1039/C8TA01420E.10.1039/C8TA01420ESotelo-Vazquez C.; Noor N.; Kafizas A.; Quesada-Cabrera R.; Scanlon D. O.; Taylor A.; Durrant J. R.; Parkin I. P. Multifunctional P-Doped TiO2 Films: A New Approach to Self-Cleaning, Transparent Conducting Oxide Materials. Chem. Mater. 2015, 27 (9), 3234–3242. 10.1021/cm504734a.10.1021/cm504734aDillon A. D.; Ghidiu M. J.; Krick A. L.; Griggs J.; May S. J.; Gogotsi Y.; Barsoum M. W.; Fafarman A. T. Highly Conductive Optical Quality Solution-processed Films of 2D Titanium Carbide. Adv. Funct. Mater. 2016, 26 (23), 4162–4168. 10.1002/adfm.201600357.10.1002/adfm.201600357Hantanasirisakul K.; Zhao M.; Urbankowski P.; Halim J.; Anasori B.; Kota S.; Ren C. E.; Barsoum M. W.; Gogotsi Y. Fabrication of Ti3C2Tx MXene Transparent Thin Films with Tunable Optoelectronic Properties. Adv. Electron. Mater. 2016, 2 (6), 1600050.10.1002/aelm.201600050.10.1002/aelm.201600050Ying G.; Kota S.; Dillon A. D.; Fafarman A. T.; Barsoum M. W. Conductive Transparent V2CTx (MXene) Films. FlatChem. 2018, 8, 25–30. 10.1016/j.flatc.2018.03.001.10.1016/j.flatc.2018.03.001Naguib M.; Kurtoglu M.; Presser V.; Lu J.; Niu J.; Heon M.; Hultman L.; Gogotsi Y.; Barsoum M. W. Two-dimensional Nanocrystals Produced by Exfoliation of Ti3AlC2. Adv. Mater. 2011, 23 (37), 4248–4253. 10.1002/adma.201102306.10.1002/adma.20110230621861270Shayesteh Zeraati A.; Mirkhani S. A.; Sun P.; Naguib M.; Braun P. V.; Sundararaj U. Improved Synthesis of Ti3C2Tx MXenes Resulting in Exceptional Electrical Conductivity, High Synthesis Yield, and Enhanced Capacitance. Nanoscale 2021, 13 (6), 3572–3580. 10.1039/D0NR06671K.10.1039/D0NR06671K33538284Naguib M.; Unocic R. R.; Armstrong B. L.; Nanda J. Large-Scale Delamination of Multi-Layers Transition Metal Carbides and Carbonitrides “MXenes.. Dalton Trans. 2015, 44 (20), 9353–9358. 10.1039/C5DT01247C.10.1039/C5DT01247C25912071Ali I.; Faraz Ud Din M.; Gu Z.-G. MXenes Thin Films: From Fabrication to Their Applications. Molecules 2022, 27 (15), 4925.10.3390/molecules27154925.10.3390/molecules27154925PMC937061235956874Gogotsi Y.; Anasori B. The Rise of MXenes. ACS Nano 2019, 13 (8), 8491–8494. 10.1021/acsnano.9b06394.10.1021/acsnano.9b0639431454866Purbayanto M. A. K.; Jakubczak M.; Bury D.; Nair V. G.; Birowska M.; Moszczyńska D.; Jastrzębska A. Tunable Antibacterial Activity of a Polypropylene Fabric Coated with Bristling Ti3C2Tx MXene Flakes Coupling the Nanoblade Effect with ROS Generation. ACS Appl. Nano Mater. 2022, 5 (4), 5373–5386. 10.1021/acsanm.2c00365.10.1021/acsanm.2c00365Iqbal A.; Shahzad F.; Hantanasirisakul K.; Kim M.-K.; Kwon J.; Hong J.; Kim H.; Kim D.; Gogotsi Y.; Koo C. M. Anomalous Absorption of Electromagnetic Waves by 2D Transition Metal Carbonitride Ti3CNTx (MXene). Science 2020, 369 (6502), 446–450. 10.1126/science.aba7977.10.1126/science.aba797732703878Sun W.; Wang H.; Vlcek L.; Peng J.; Brady A. B.; Osti N. C.; Mamontov E.; Tyagi M.; Nanda J.; Greenbaum S. G.; et al. Multiscale and Multimodal Characterization of 2D Titanium Carbonitride MXene. Adv. Mater. Interfaces 2020, 7 (11), 1902207.10.1002/admi.201902207.10.1002/admi.201902207Xu Y.; Wang F.; Lei S.; Wei Y.; Zhao D.; Gao Y.; Ma X.; Li S.; Chang S.; Wang M.; et al. In Situ Grown Two-Dimensional TiO2/Ti3CN MXene Heterojunction Rich in Ti3+ Species for Highly Efficient Photoelectrocatalytic CO2 Reduction. Chem. Eng. J. 2023, 452, 139392.10.1016/j.cej.2022.139392.10.1016/j.cej.2022.139392Gao L.; Chen H.; Kuklin A. V.; Wageh S.; Al-Ghamdi A. A.; Ågren H.; Zhang H. Optical Properties of Few-Layer Ti3CN MXene: From Experimental Observations to Theoretical Calculations. ACS Nano 2022, 16 (2), 3059–3069. 10.1021/acsnano.1c10577.10.1021/acsnano.1c1057735048704Liang K.; Tabassum A.; Kothakonda M.; Zhang X.; Zhang R.; Kenney B.; Koplitz B. D.; Sun J.; Naguib M. Two-Dimensional Titanium Carbonitride MXene as a Highly Efficient Electrocatalyst for Hydrogen Evolution Reaction. Mater. Today Energy 2022, 2 (1), 100075.10.1016/j.matre.2021.100075.10.1016/j.matre.2021.100075Tang Q.; Xiong P.; Wang H.; Wu Z. Boosted CO2 Photoreduction Performance on Ru-Ti3CN MXene-TiO2 Photocatalyst Synthesized by Non-HF Lewis Acidic Etching Method. J. Colloid Interface Sci. 2022, 619, 179–187. 10.1016/j.jcis.2022.03.137.10.1016/j.jcis.2022.03.13735395536Huang S.; Mochalin V. N. Understanding Chemistry of Two-Dimensional Transition Metal Carbides and Carbonitrides (MXenes) with Gas Analysis. ACS Nano 2020, 14 (8), 10251–10257. 10.1021/acsnano.0c03602.10.1021/acsnano.0c0360232644772Huang S.; Mochalin V. N. Hydrolysis of 2D Transition-Metal Carbides (MXenes) in Colloidal Solutions. Inorg. Chem. 2019, 58 (3), 1958–1966. 10.1021/acs.inorgchem.8b02890.10.1021/acs.inorgchem.8b0289030649863Huang S.; Mochalin V. N. Combination of High PH and an Antioxidant Improves Chemical Stability of Two-Dimensional Transition-Metal Carbides and Carbonitrides (MXenes) in Aqueous Colloidal Solutions. Inorg. Chem. 2022, 61 (26), 9877–9887. 10.1021/acs.inorgchem.2c00537.10.1021/acs.inorgchem.2c0053735714052Avgustinik A.; Drozdetskaya G.; Ordan’yan S. Reaction of Titanium Carbide with Water. Powder Metall. Met. Ceram. 1967, 6 (6), 470–473. 10.1007/BF00780135.10.1007/BF00780135Du F.; Tang H.; Pan L.; Zhang T.; Lu H.; Xiong J.; Yang J.; Zhang C. J. Environmental Friendly Scalable Production of Colloidal 2D Titanium Carbonitride MXene with Minimized Nanosheets Restacking for Excellent Cycle Life Lithium-Ion Batteries. Electrochim. Acta 2017, 235, 690–699. 10.1016/j.electacta.2017.03.153.10.1016/j.electacta.2017.03.153Zhao Z.; Qian X.; Zhu H.; Miao Y.; Ye H. Synthesis of Accordion-like Ti3CN MXene and Its Structural Stability in Aqueous Solutions and Organic Solvents. ChemistrySelect 2022, 7 (8), e20210417610.1002/slct.202104176.10.1002/slct.202104176Maleski K.; Mochalin V. N.; Gogotsi Y. Dispersions of Two-Dimensional Titanium Carbide MXene in Organic Solvents. Chem. Mater. 2017, 29 (4), 1632–1640. 10.1021/acs.chemmater.6b04830.10.1021/acs.chemmater.6b04830Hantanasirisakul K.; Alhabeb M.; Lipatov A.; Maleski K.; Anasori B.; Salles P.; Ieosakulrat C.; Pakawatpanurut P.; Sinitskii A.; May S. J.; et al. Effects of Synthesis and Processing on Optoelectronic Properties of Titanium Carbonitride MXene. Chem. Mater. 2019, 31 (8), 2941–2951. 10.1021/acs.chemmater.9b00401.10.1021/acs.chemmater.9b00401Lee Y.; Kim S. J.; Kim Y.-J.; Lim Y.; Chae Y.; Lee B.-J.; Kim Y.-T.; Han H.; Gogotsi Y.; Ahn C. W. Oxidation-Resistant Titanium Carbide MXene Films. J. Mater. Chem. A 2020, 8 (2), 573–581. 10.1039/C9TA07036B.10.1039/C9TA07036BZhou H.; Han S. J.; Lee H.; Zhang D.; Anayee M.; Jo S. H.; Gogotsi Y.; Lee T. Overcoming the Limitations of MXene Electrodes for Solution-Processed Optoelectronic Devices. Adv. Mater. 2022, 34, 2206377.10.1002/adma.202206377.10.1002/adma.20220637736037306Huang S.; Mutyala K.; Sumant A.; Mochalin V. Achieving Superlubricity with 2D Transition Metal Carbides (MXenes) and MXene/Graphene Coatings. Materials Today Advances 2021, 9, 100133.10.1016/j.mtadv.2021.100133.10.1016/j.mtadv.2021.100133Hwang B.; Park M.; Kim T.; Han S. Effect of RGO Deposition on Chemical and Mechanical Reliability of Ag Nanowire Flexible Transparent Electrode. RSC Adv. 2016, 6 (71), 67389–67395. 10.1039/C6RA10338C.10.1039/C6RA10338CAhn Y.; Jeong Y.; Lee Y. Improved Thermal Oxidation Stability of Solution-Processable Silver Nanowire Transparent Electrode by Reduced Graphene Oxide. ACS Appl. Mater. Interfaces 2012, 4 (12), 6410–6414. 10.1021/am301913w.10.1021/am301913w23206541Yang Y.; Chen S.; Li W.; Li P.; Ma J.; Li B.; Zhao X.; Ju Z.; Chang H.; Xiao L.; et al. Reduced Graphene Oxide Conformally Wrapped Silver Nanowire Networks for Flexible Transparent Heating and Electromagnetic Interference Shielding. ACS Nano 2020, 14 (7), 8754–8765. 10.1021/acsnano.0c03337.10.1021/acsnano.0c0333732538618Kim H.-S.; Yang B.; Stylianakis M. M.; Kymakis E.; Zakeeruddin S. M.; Grätzel M.; Hagfeldt A. Reduced Graphene Oxide Improves Moisture and Thermal Stability of Perovskite Solar Cells. Cell Reports Phys. Sci. 2020, 1 (5), 100053.10.1016/j.xcrp.2020.100053.10.1016/j.xcrp.2020.100053Murphy B. B.; Apollo N. V.; Unegbu P.; Posey T.; Rodriguez-Perez N.; Hendricks Q.; Cimino F.; Richardson A. G.; Vitale F. Vitamin C-Reduced Graphene Oxide Improves the Performance and Stability of Multimodal Neural Microelectrodes. iScience 2022, 25 (7), 104652.10.1016/j.isci.2022.104652.10.1016/j.isci.2022.104652PMC926352535811842Chertopalov S.; Mochalin V. N. Environment-Sensitive Photoresponse of Spontaneously Partially Oxidized Ti3C2 MXene Thin Films. ACS Nano 2018, 12 (6), 6109–6116. 10.1021/acsnano.8b02379.10.1021/acsnano.8b0237929883092Saxena S.; Tyson T. A.; Shukla S.; Negusse E.; Chen H.; Bai J. Investigation of Structural and Electronic Properties of Graphene Oxide. Appl. Phys. Lett. 2011, 99 (1), 013104.10.1063/1.3607305.10.1063/1.3607305Li X.; Ma X.; Zhang H.; Xue N.; Yao Q.; He T.; Qu Y.; Zhang J.; Tao X. Ambient-Stable MXene with Superior Performance Suitable for Widespread Applications. Chem. Eng. J. 2023, 455, 140635.10.1016/j.cej.2022.140635.10.1016/j.cej.2022.140635Yazdanparast S.; Soltanmohammad S.; Fash-White A.; Tucker G. J.; Brennecka G. L. Synthesis and Surface Chemistry of 2D TiVC Solid-Solution MXenes. ACS Appl. Mater. Interfaces 2020, 12 (17), 20129–20137. 10.1021/acsami.0c03181.10.1021/acsami.0c0318132242406Sarycheva A.; Gogotsi Y. Raman Spectroscopy Analysis of the Structure and Surface Chemistry of Ti3C2Tx MXene. Chem. Mater. 2020, 32 (8), 3480–3488. 10.1021/acs.chemmater.0c00359.10.1021/acs.chemmater.0c00359Presser V.; Naguib M.; Chaput L.; Togo A.; Hug G.; Barsoum M. W. First-order Raman Scattering of the MAX Phases: Ti2AlN, Ti2AlC0.5N0.5, Ti2AlC, (Ti0.5V0.5)2AlC, V2AlC, Ti3AlC2, and Ti3GeC2. J. Raman Spectrosc. 2012, 43 (1), 168–172. 10.1002/jrs.3036.10.1002/jrs.3036Spanier J. E.; Gupta S.; Amer M.; Barsoum M. W. Vibrational Behavior of the MN+1AXN Phases from First-Order Raman Scattering (M= Ti, V, Cr, A= Si, X= C, N). Phys. Rev. B 2005, 71 (1), 012103.10.1103/PhysRevB.71.012103.10.1103/PhysRevB.71.012103Valurouthu G.; Maleski K.; Kurra N.; Han M.; Hantanasirisakul K.; Sarycheva A.; Gogotsi Y. Tunable Electrochromic Behavior of Titanium-Based MXenes. Nanoscale 2020, 12 (26), 14204–14212. 10.1039/D0NR02673E.10.1039/D0NR02673E32608430Xuan J.; Wang Z.; Chen Y.; Liang D.; Cheng L.; Yang X.; Liu Z.; Ma R.; Sasaki T.; Geng F. Organic-base-driven Intercalation and Delamination for the Production of Functionalized Titanium Carbide Nanosheets with Superior Photothermal Therapeutic Performance. Angew. Chem., Int. Ed. 2016, 128 (47), 14789–14794. 10.1002/ange.201606643.10.1002/ange.20160664327774723Nair R.; Wu H.; Jayaram P. N.; Grigorieva I. V.; Geim A. Unimpeded Permeation of Water through Helium-Leak-Tight Graphene-Based Membranes. Science 2012, 335 (6067), 442–444. 10.1126/science.1211694.10.1126/science.121169422282806Kim T.; Kang J.; Yang S.; Sung S.; Kim Y.; Park C. Facile Preparation of Reduced Graphene Oxide-Based Gas Barrier Films for Organic Photovoltaic Devices. Energy Environ. Sci. 2014, 7 (10), 3403–3411. 10.1039/C4EE02310B.10.1039/C4EE02310BMoon I. K.; Kim J. I.; Lee H.; Hur K.; Kim W. C.; Lee H. 2D Graphene Oxide Nanosheets as an Adhesive Over-Coating Layer for Flexible Transparent Conductive Electrodes. Sci. Rep. 2013, 3 (1), 1–7. 10.1038/srep01112.10.1038/srep01112Li Y.; Ding L.; Guo Y.; Liang Z.; Cui H.; Tian J. Boosting the Photocatalytic Ability of g-C3N4 for Hydrogen Production by Ti3C2 MXene Quantum Dots. ACS Appl. Mater. Interfaces 2019, 11 (44), 41440–41447. 10.1021/acsami.9b14985.10.1021/acsami.9b1498531615201Wang P.; Lu X.; Boyjoo Y.; Wei X.; Zhang Y.; Guo D.; Sun S.; Liu J. Pillar-Free TiO2/Ti3C2 Composite with Expanded Interlayer Spacing for High-Capacity Sodium Ion Batteries. J. Power Sources 2020, 451, 227756.10.1016/j.jpowsour.2020.227756.10.1016/j.jpowsour.2020.227756Liu C.; Wu W.; Shi Y.; Yang F.; Liu M.; Chen Z.; Yu B.; Feng Y. Creating MXene/Reduced Graphene Oxide Hybrid towards Highly Fire Safe Thermoplastic Polyurethane Nanocomposites. Compos. B. Eng. 2020, 203, 108486.10.1016/j.compositesb.2020.108486.10.1016/j.compositesb.2020.108486Tu W.-C.; Shih Y.-H.; Huang J.-H.; Chen Y.-C. Semi-Transparent Reduced Graphene Oxide Photodetectors for Ultra-Low Power Operation. Opt. Express 2021, 29 (10), 14208–14217. 10.1364/OE.419403.10.1364/OE.41940333985145Zheng F.; Xu W.-L.; Jin H.-D.; Hao X.-T.; Ghiggino K. P. Charge Transfer from Poly (3-Hexylthiophene) to Graphene Oxide and Reduced Graphene Oxide. RSC Adv. 2015, 5 (109), 89515–89520. 10.1039/C5RA18540H.10.1039/C5RA18540HVelasco-Soto M. A.; Pérez-García S. A.; Alvarez-Quintana J.; Cao Y.; Nyborg L.; Licea-Jiménez L. Selective Band Gap Manipulation of Graphene Oxide by Its Reduction with Mild Reagents. Carbon 2015, 93, 967–973. 10.1016/j.carbon.2015.06.013.10.1016/j.carbon.2015.06.013Bury D.; Jakubczak M.; Purbayanto M. A. K.; Wojciechowska A.; Moszczyńska D.; Jastrzębska A. M. Photocatalytic Activity of the Oxidation Stabilized Ti3C2Tx MXene in Decomposing Methylene Blue, Bromocresol Green and Commercial Textile Dye. Small Methods 2023, 7, 2201252.10.1002/smtd.202201252.10.1002/smtd.20220125236879487Mashtalir O.; Cook K. M.; Mochalin V. N.; Crowe M.; Barsoum M. W.; Gogotsi Y. Dye Adsorption and Decomposition on Two-Dimensional Titanium Carbide in Aqueous Media. J. Mater. Chem. A 2014, 2 (35), 14334–14338. 10.1039/C4TA02638A.10.1039/C4TA02638AJakimińska A.; Pawlicki M.; Macyk W. Photocatalytic Transformation of Rhodamine B to Rhodamine-110-The Mechanism Revisited. J. Photochem. Photobiol., A 2022, 433, 114176.10.1016/j.jphotochem.2022.114176.10.1016/j.jphotochem.2022.114176Banerjee S.; Dionysiou D. D.; Pillai S. C. Self-Cleaning Applications of TiO2 by Photo-Induced Hydrophilicity and Photocatalysis. Appl. Catal., B 2015, 176, 396–428. 10.1016/j.apcatb.2015.03.058.10.1016/j.apcatb.2015.03.058Zhao Y.; Li C.; Liu X.; Gu F.; Du H. L.; Shi L. Zn-Doped TiO2 Nanoparticles with High Photocatalytic Activity Synthesized by Hydrogen-Oxygen Diffusion Flame. Appl. Catal., B 2008, 79 (3), 208–215. 10.1016/j.apcatb.2007.09.044.10.1016/j.apcatb.2007.09.044Cheng L.; Chen Q.; Li J.; Liu H. Boosting the Photocatalytic Activity of CdLa2S4 for Hydrogen Production Using Ti3C2 MXene as a Co-Catalyst. Appl. Catal., B 2020, 267, 118379.10.1016/j.apcatb.2019.118379.10.1016/j.apcatb.2019.118379Afzal S.; Daoud W. A.; Langford S. J. Superhydrophobic and Photocatalytic Self-Cleaning Cotton. J. Mater. Chem. A 2014, 2 (42), 18005–18011. 10.1039/C4TA02764G.10.1039/C4TA02764GKamat P. V. TiO2 Nanostructures: Recent Physical Chemistry Advances. J. Phys. Chem. C 2012, 116 (22), 11849–11851. 10.1021/jp305026h.10.1021/jp305026hXu C.; Yang F.; Deng B.; Che S.; Yang W.; Zhang G.; Sun Y.; Li Y. RGO-Wrapped Ti3C2/TiO2 Nanowires as a Highly Efficient Photocatalyst for Simultaneous Reduction of Cr (VI) and Degradation of RhB under Visible Light Irradiation. J. Alloys Compd. 2021, 874, 159865.10.1016/j.jallcom.2021.159865.10.1016/j.jallcom.2021.159865Moafi H. F.; Shojaie A. F.; Zanjanchi M. A. Photocatalytic Self-Cleaning Properties of Cellulosic Fibers Modified by Nano-Sized Zinc Oxide. Thin Solid Films 2011, 519 (11), 3641–3646. 10.1016/j.tsf.2011.01.347.10.1016/j.tsf.2011.01.347Purbayanto M. A. K.; Chandel M.; Birowska M.; Rosenkranz A.; Jastrzebska A.. Optically Active MXenes in van Der Waals Heterostructures. Adv. Mater., In Press.10.1002/adma.20230185010.1002/adma.20230185037715336