High-Valence Mo Doping and Oxygen Vacancy Engineering to Promote Morphological Evolution and Oxygen Evolution Reaction Activity.

ACS Appl Mater Interfaces

Department of Applied Chemistry, Petroleum and Chemical Industry Key Laboratory of Organic Electrochemical Synthesis, Zhejiang University of Technology, Hangzhou 310014, P. R. China.

Published: September 2023

The rational design of high-efficiency, low-cost electrocatalysts for electrochemical water oxidation in alkaline media remains a huge challenge. Herein, combined strategies of metal doping and vacancy engineering are employed to develop unique Mo-doped cobalt oxide nanosheet arrays. The Mo dopants exist in the form of high-valence Mo, and the doping amount has a significant effect on the structure morphology, which transforms from 1D nanowires/nanobelts to 2D nanosheets and finally 3D nanoflowers. In addition, the introduction of vast oxygen vacancies helps to modulate the electronic states and increase the electronic conductivity. The optimal catalyst MoCoO-3 exhibits greatly increased active sites and enhanced reaction kinetics. It gives a dramatically lower overpotential at 50 mA cm (288 mV), much smaller than that of the undoped counterpart (418 mV) and comparable to those of the recently reported electrocatalysts. Density functional theory results further verify that the increased electronic conductivity and optimized adsorption energy toward oxygen evolution reaction intermediates are mainly responsible for the enhanced catalytic activity. Moreover, the assembled two-electrode electrolyzer (MoCoO-3||Pt/C) exhibits superior performance with the cell potential decreased by 233 mV to reach a current density of 50 mA cm with respect to the benchmark counterpart catalysts (RuO||Pt/C). This work might contribute to the rational design of effective, low-cost electrocatalyst materials by combining multiple strategies.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.3c10238DOI Listing

Publication Analysis

Top Keywords

high-valence doping
8
vacancy engineering
8
oxygen evolution
8
evolution reaction
8
rational design
8
electronic conductivity
8
oxygen
4
doping oxygen
4
oxygen vacancy
4
engineering promote
4

Similar Publications

Mid-Infrared High-Power InGaAsSb/AlGaInAsSb Multiple-Quantum-Well Laser Diodes Around 2.9 μm.

Nanomaterials (Basel)

January 2025

Key Laboratory of Optoelectronic Materials and Devices, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.

Antimonide laser diodes, with their high performance above room temperature, exhibit significant potential for widespread applications in the mid-infrared spectral region. However, the laser's performance significantly degrades as the emission wavelength increases, primarily due to severe quantum-well hole leakage and significant non-radiative recombination. In this paper, we put up an active region with a high valence band offset and excellent crystalline quality with high luminescence to improve the laser's performance.

View Article and Find Full Text PDF

Enhancing CO Adsorption on MgO: Insights into Dopant Selection and Mechanistic Pathways.

Biomimetics (Basel)

December 2024

Entropic Interface Group, Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.

Inspired by our recent success in designing CO-phobic and CO-philic domains on nano-MgO for effective CO adsorption, our ongoing efforts focus on incorporating dopants into pristine MgO to further enhance its CO adsorption capabilities. However, a clear set of guidelines for dopant selection and a holistic understanding of the underlying mechanisms is still lacking. In our investigation, we combined first-principles calculations with experimental approaches to explore the crystal and electronic structural changes in MgO doped with high-valence elements (Al, C, Si, and Ti) and their interactions with CO.

View Article and Find Full Text PDF

Designing cost-effective electrocatalysts with fast reaction kinetics and high stability is an outstanding challenge in green hydrogen generation through overall water splitting (OWS). Layered double hydroxide (LDH) heterostructure materials are promising candidates to catalyze both oxygen evolution reaction (OER) and hydrogen evolution reaction (HER), the two OWS half-cell reactions. This work develops a facile hydrothermal route to synthesiz hierarchical heterostructure MoS@NiFeCo-LDH and MoS@NiFeCo-Mo(doped)-LDH electrocatalysts, which exhibit extremely good OER and HER performance as witnessed by their low IR-corrected overpotentials of 156 and 61 mV with at a current density of 10 mA cm under light assistance.

View Article and Find Full Text PDF

Modulating the structure of O3-type NaNiFeMnO for high-performance sodium-ion batteries via NaMoO reactive wetting coating combined with Mo doping and interface reconstruction.

J Colloid Interface Sci

April 2025

School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, Guangxi, PR China; Chongzuo Key Laboratory of Comprehensive Utilization Technology of Manganese Resources, Guangxi Key Laboratory for High-value Utilization of Manganese Resources, College of Chemistry and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, Guangxi, PR China. Electronic address:

O3-type NaNiFeMnO (NFM) is considered as a promising cathode material for sodium-ion batteries (SIBs) due to its high theoretical energy density and low production cost. However, the applications of NFM are restricted owing to detrimental interfacial side reactions and phase evolution during cycling. Herein, a three-in-one modification strategy, including NaMoO coating, surface reconstruction from layered to spinel phase, and Mo doping, is proposed to design NFM.

View Article and Find Full Text PDF

Chlorophenols are difficult to degrade and mineralize by traditional advanced oxidation processes due to the strong electronegativity of chlorine. Here, a dual-site atomically dispersed catalyst (FeMoNC) is reported, which Fe/Mo supported on mesoporous nitrogen-doped carbon is prepared through high-temperature migration. The FeMoNC exhibits a high dechlorination rate of 93.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!