Detection of nucleobases is of great significance in DNA sequencing, which is one of the main goals of the Human Genome Project. By employing the nonequilibrium Green function method combined with density functional theory, we proposed a biosensor based on the TMN (TM = Ni, Cu) embedded graphene nanoribbons for nucleobase detection. The adsorption energy calculations show that all five nucleobases are physisorbed on the TMN-doped graphene nanoribbons. Utilizing the distinction of current, the bases T, C, and U can be gradually detected at the biases of 0.4, 0.6, and 0.8 V by NiN-doped graphene nanoribbons, respectively. The bases A and G can be finally distinguished by CuN-doped graphene nanoribbons under an external bias of not less than 0.8 V. The identification of individual nucleobases at specific biases could provide a novel mechanism for the further development of biosensors in rapid genome sequencing applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpcb.3c02661 | DOI Listing |
J Hazard Mater
January 2025
Engineering Research Center of Groundwater Pollution Control and Remediation (Ministry of Education), College of Water Sciences, Beijing Normal University, No 19, Xinjiekouwai Street, Beijing 100875, China. Electronic address:
Electronic mediators are an effective means of enhancing the efficiency of microbial electrochemical electron transfer; however, there are still gaps in understanding the strengthening mechanisms and the efficiency of removing antibiotic resistance genes (ARGs) and antibiotic-resistant bacteria (ARB). This study systematically elucidates the effects of various electron mediators on bioelectrochemical processes, electron transfer efficiency, and the underlying mechanisms that inhibit ARG propagation within sediment microbial fuel cell systems (SMFCs). The results indicate that the addition of electron mediators significantly increased the output voltage (33.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Physics Postgraduate Program, Institute of Physics, University of Brasília, 70910-900 Brasília-DF, Brazil.
Two-dimensional (2D) nanomaterials are at the forefront of potential technological advancements. Carbon-based materials have been extensively studied since synthesizing graphene, which revealed properties of great interest for novel applications across diverse scientific and technological domains. New carbon allotropes continue to be explored theoretically, with several successful synthesis processes for carbon-based materials recently achieved.
View Article and Find Full Text PDFRSC Adv
January 2025
Department of Food Technology, College of Agriculture Engineering Sciences, Salahaddin University-Erbil Erbil Kurdistan Region Iraq
Arsenic (As) contamination in groundwater has become a global concern, and it poses a serious threat to the health of millions of people. Groundwater with high As concentrations has been reported worldwide. It is widely recognized that the toxicity of As largely depends on its chemical forms, making As speciation a critical issue.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Physics, Hasanuddin University, Makassar 90245, Indonesia. Electronic address:
The increasing reliance on electronic devices has created a pressing demand for high-performance and sustainable electromagnetic interference shielding materials. While conventional materials, such as metals and carbon-based composites, offer excellent shielding capabilities, they are hindered by high costs, environmental concerns, and limitations in scalability. Polysaccharide-based materials, including cellulose, chitosan, and alginate, represent a promising alternative due to their biodegradability, renewability, and versatility.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Chemical Engineering, Dr B R Ambedkar National Institute of Technology, Jalandhar 144011, Punjab, India.
Antimicrobial polymeric coatings rely not only on their surface functionalities but also on nanoparticles (NPs). Antimicrobial coatings gain their properties from the addition of NPs into a polymeric matrix. NPs that have been used include metal-based NPs, metal oxide NPs, carbon-based nanomaterials, and organic NPs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!