Removing the stimulation artifacts evoked by the functional electrical stimulation (FES) in electromyogram (EMG) signals is a challenge. Previous researches on stimulation artifact removal have focused on FES modulation with time-constant parameters, which has limitations when there are time-variant parameters. Therefore, considering the synchronism of muscle activation induced by FES and the asynchronism of muscle activation induced by proprioceptive nerves, we proposed a novel adaptive spatial filtering method called G-S-G. It entails fusing the Gram-Schmidt orthogonalization (G-S) and Grubbs criterion (G) algorithms to remove the FES-evoked stimulation artifacts in multi-channel EMG signals. To verify this method, we constructed a series of simulation data by fusing the FES signal with time-variant parameters and the voluntary EMG (vEMG) signal, and applied the G-S-G method to remove any FES artifacts from the simulation data. After that, we calculated the root mean square (RMS) value for both preprocessed simulation data and the vEMG data, and then compared them. The simulation results showed that the G-S-G method was robust and effective at removing FES artifacts in simulated EMG signals, and the correlation coefficient between the preprocessed EMG data and the recorded vEMG data yielded a good performance, up to 0.87. Furthermore, we applied the proposed method to the experimental EMG data with FES-evoked stimulation artifact, and also achieved good performance with both the time-constant and time-variant parameters. This study provides a new and accessible approach to resolving the problem of removing FES-evoked stimulation artifacts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/TNSRE.2023.3311819DOI Listing

Publication Analysis

Top Keywords

time-variant parameters
16
stimulation artifacts
12
emg signals
12
fes-evoked stimulation
12
simulation data
12
adaptive spatial
8
spatial filtering
8
filtering method
8
multi-channel emg
8
artifact removal
8

Similar Publications

In addition to the usual loads, fixed jacket offshore platforms can be exposed to accidental loads from ship collisions. Indentation of tubular components is a significant defect that occurs when a supply vessel collides with a jacket platform, which can affect the ultimate strength of the offshore platform. This paper performs a nonlinear dynamic analysis using ABAQUS software to evaluate the ultimate strength of a wellhead jacket platform and to investigate its structural response to two consecutive impacts from a 2700-ton ship.

View Article and Find Full Text PDF

MSHANet: a multi-scale residual network with hybrid attention for motor imagery EEG decoding.

Cogn Neurodyn

December 2024

Hebei Key Laboratory of Bioelectromagnetics and Neuroengineering, Tianjin, China.

EEG decoding plays a crucial role in the development of motor imagery brain-computer interface. Deep learning has great potential to automatically extract EEG features for end-to-end decoding. Currently, the deep learning is faced with the chanllenge of decoding from a large amount of time-variant EEG to retain a stable peroformance with different sessions.

View Article and Find Full Text PDF

CMINNs: Compartment model informed neural networks - Unlocking drug dynamics.

Comput Biol Med

January 2025

Division of Applied Mathematics, Brown University, Providence, RI, USA. Electronic address:

In the field of pharmacokinetics and pharmacodynamics (PKPD) modeling, which plays a pivotal role in the drug development process, traditional models frequently encounter difficulties in fully encapsulating the complexities of drug absorption, distribution, and their impact on targets. Although multi-compartment models are frequently utilized to elucidate intricate drug dynamics, they can also be overly complex. To generalize modeling while maintaining simplicity, we propose an innovative approach that enhances PK and integrated PK-PD modeling by incorporating fractional calculus or time-varying parameter(s), combined with constant or piecewise constant parameters.

View Article and Find Full Text PDF

We analytically derive the formulas of the threshold pump intensity and the range of possible detuning for the initiation of the pure quartic platicon (PQP) in the presence of multiphoton absorption, free-carrier absorption, and free-carrier dispersion. Theoretical investigations demonstrate a feasible approach for the excitation of PQP in the normal quartic dispersion regime via the free-carrier effects in platforms such as silicon, germanium, and their derivates. Due to the time-variant nonlinear loss related to free-carrier absorption or additional nonlinear detuning induced by free-carrier plasma dispersion, PQP can be generated through turn-key or laser frequency scanning schemes in both the three- and four-photon absorption regimes.

View Article and Find Full Text PDF

Researchers use dynamic PET imaging with target-selective tracer molecules to probe molecular processes. Kinetic models have been developed to describe these processes. The models are typically fitted to the measured PET data with the assumption that the brain is in a steady-state condition for the duration of the scan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!