Flexible and precise manipulation of droplet transport is of significance for scientific and engineering applications, but real-time and on-demand droplet manipulation remains a challenge. Herein, we report a strategy using light for the outstanding manipulation of binary droplet motion on a high-energy surface and reveal the underlying mechanism. Upon irradiation to a substrate by a focused light beam, the substrate can provide a localized heating source photothermal conversion, and a binary droplet can be flexibly transported on a high-energy surface with free contact-line pinning, exhibiting light-propelled droplet transport. We theoretically showed that the surface tension gradient across the droplet interface resulting from the localized photothermal effect is responsible for actuating droplet transport. Remarkably, the high reconfigurability and flexibility of light allowed for binary droplet transport with dynamically tunable velocity and direction as well as arbitrary trajectory assisted by 2D channels on a high-energy surface. Complex droplet transportation, controllable droplet coalescence, and anti-gravity motion were realized. The promising applicability of this light-fueled droplet platform was also demonstrated by directional transport of biosample droplets containing DNA molecules and cells, as well as successional microreactions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d3lc00582hDOI Listing

Publication Analysis

Top Keywords

droplet transport
20
binary droplet
16
high-energy surface
16
droplet
12
transport
6
surface
5
light-manipulated binary
4
high-energy
4
transport high-energy
4
surface flexible
4

Similar Publications

Microglia are progressively activated by inflammation and exhibit phagocytic dysfunction in the pathogenesis of neurodegenerative diseases. Lipid-droplet-accumulating microglia were identified in the aging mouse and human brain; however, little is known about the formation and role of lipid droplets in microglial neuroinflammation of Alzheimer's disease (AD). Here, we report a striking buildup of lipid droplets accumulation in microglia in the 3xTg mouse brain.

View Article and Find Full Text PDF

Sesame (Sesamum indicum L., 2n = 2× = 26) from the Pedaliaceae family is primarily grown for its high oil content, rich in unsaturated fatty acids like linoleic acid (LA) and alpha-linolenic acid (ALA). However, the molecular mechanisms of sesame oil accumulation remain poorly understood.

View Article and Find Full Text PDF

Tianxiangdan suppresses foam cell formation by enhancing lipophagy and reduces the progression of atherosclerosis.

In Vitro Cell Dev Biol Anim

January 2025

College of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang Medical University, Urumqi, 830063, China.

The aim of this study is to assess the impact of Tianxiangdan (TXD) on lipophagy in foam cells and its underlying mechanism in treating atherosclerosis, particularly focusing on its efficacy in lowering blood lipids. In vivo, ApoE-/- atherosclerosis mouse models were established for group intervention. Blood lipid levels of the mice were measured, lipid deposition and autophagy levels in atherosclerotic plaques were assessed, and co-localization of lipid droplets and autophagosomes was examined.

View Article and Find Full Text PDF

Recent progress in digital microfluidics has revealed the distinct advantages of liquid marbles, such as minimal surface friction, reduced evaporation rates, and non-wettability compared to uncoated droplets. This study provides a comprehensive examination of an innovative technique for the precise, contamination-free manipulation of non-magnetic water liquid marbles (WLMs) carried by a ferrofluid liquid marble (FLM) under the control of direct current (DC) and pulse-width modulation (PWM) magnetic fields. The concept relies on the phenomenon in which an FLM and WLMs form a shared meniscus when placed together on a water surface, causing the WLMs to closely track the magnetically actuated FLM.

View Article and Find Full Text PDF

Polyelectrolyte multilayer (PEM) membranes, with advantageous features of versatile chemistry and structures, are driving the development of advanced nanofiltration (NF) membranes with exceptional performance. While developing a printing method holds great promise for the eventual mass production of these membranes, reports on the printing method and the underlying mechanisms of membrane formation are currently scarce. Herein, we develop an aerosol-assisted printing (AAP) system for fabricating PEM NF membranes with highly tunable separation characteristics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!