Objective: As a frequent complication of diabetes mellitus (DM), diabetic retinopathy (DR) is now one of the major causes of blindness. Recent reports have shown that retinal pigment epithelial cell (RPEC) damage plays an essential part in DR development and progression. This work intended to explore the potential effects of Gigantol on high glucose (HG)-stimulated RPEC damage and identify potential mechanisms.

Methods: Cell viability, cell damage, and cell apoptosis were evaluated by CCK-8, lactate dehydrogenase (LDH) and flow cytometry assays. The levels of oxidative stress biomarkers and pro-inflammatory cytokines were assessed using corresponding commercial kits and ELISA. Additionally, the levels of MTDH and NF-kB signaling pathway-related proteins were detected by western blotting.

Results: Gigantol dose-dependently enhanced cell viability and decreased apoptosis in HG-challenged ARPE-19 cells. Also, Gigantol notably relieved oxidative stress and inflammatory responses in ARPE-19 cells under HG conditions. Gigantol dose-dependently suppressed MTDH expression. In addition, MTDH restoration partially counteracted the protective effects of Gigantol on ARPE-19 cells subject to HG treatment. Mechanically, Gigantol inactivated the NF-kB signaling pathway, which was partly restored after MTDH overexpression.

Conclusion: Our findings suggested that Gigantol protected against HG-induced RPEC damage by inactivating the NF-kB signaling via MTDH inhibition, offering a potent therapeutic drug for DR treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1080/08923973.2023.2247545DOI Listing

Publication Analysis

Top Keywords

nf-kb signaling
16
oxidative stress
12
rpec damage
12
arpe-19 cells
12
gigantol
8
retinal pigment
8
pigment epithelial
8
signaling pathway
8
effects gigantol
8
cell viability
8

Similar Publications

(PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD) is characterized by progressive and incurable airflow obstruction and chronic inflammation. Both TGF-β1 and CXCL8 have been well described as fundamental to COPD progression. DNA methylation and histone acetylation, which are well-understood epigenetic mechanisms regulating gene expression, are associated with COPD progression.

View Article and Find Full Text PDF

Cardioprotective potential of tectochrysin against vanadium induced heart damage via regulating NLRP3, JAK1/STAT3 and NF-κB pathway.

J Trace Elem Med Biol

January 2025

Department of Pathology, College of Medicine, King Khalid University, Asir 61421, Saudi Arabia; Department of Forensic Medicine and Clinical Toxicology, Mansoura University, Egypt.

Background: Vanadium (VAN) is a significant trace element, but its higher exposure is reported to cause severe organ toxicity. Tectochrysin (TEC) is a naturally derived flavonoid which demonstrates a wide range of pharmacological properties.

Aim: The current study was planned to assess the cardioprotective potential of TEC against VAN induced cardiotoxicity in rats via regulating biochemical, and histological profile.

View Article and Find Full Text PDF

The purpose of this study was to determine the levels of IL-17, Bcl-3 and IκBζ gene expression in the gingival crevicular fluid (GCF) of psoriatic and healthy individuals and to compare the clinical periodontal parameters in the patient and control groups. A total of 10 psoriasis patients and 2 healthy patients in the control group were included in the analysis for IL-17, Bcl-3, and IκBζ gene expression in the GCF. Periodontal health, gingival index, plaque index, and mobility (using a periotest device) levels were compared between the groups.

View Article and Find Full Text PDF

[Protective effect of tumor necrosis factor receptor-associated factor 6 inhibitor C25-140 on acute kidney injury induced by diquat poisoning in mice].

Zhonghua Wei Zhong Bing Ji Jiu Yi Xue

December 2024

Department of Emergency, Kweichow Moutai Hospital, Renhuai 564500, Guizhou, China. Corresponding author: Ou Renyang, Email:

Objective: To investigate the protective effect and mechanism of tumor necrosis factor receptor-associated factor 6 (TRAF6) inhibitor C25-140 on acute kidney injury (AKI) induced by acute diquat (DQ) poisoning in mice.

Methods: A total of 80 SPF grade healthy male C57BL/6 mice were randomly divided into the normal control group, DQ model group, C25-140 intervention group, and C25-140 control group, with 20 mice in each group. The DQ poisoning mouse model was established by using one-time intraperitoneal injection of 1 mL of 40 mg/kg DQ solution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!