Single-Cell Transcriptomic Analysis Reveals the Molecular Profile of Go-Opsin Photoreceptor Cells in Sea Urchin Larvae.

Cells

Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.

Published: August 2023

The ability to perceive and respond to light stimuli is fundamental not only for spatial vision but also to many other light-mediated interactions with the environment. In animals, light perception is performed by specific cells known as photoreceptors and, at molecular level, by a group of GPCRs known as opsins. Sea urchin larvae possess a group of photoreceptor cells (PRCs) deploying a Go-Opsin (Opsin3.2) which have been shown to share transcription factors and morphology with PRCs of the ciliary type, raising new questions related to how this sea urchin larva PRC is specified and whether it shares a common ancestor with ciliary PRCs or it if evolved independently through convergent evolution. To answer these questions, we combined immunohistochemistry and fluorescent in situ hybridization to investigate how the Opsin3.2 PRCs develop in the sea urchin larva. Subsequently, we applied single-cell transcriptomics to investigate the molecular signature of the -expressing cells and show that they deploy an ancient regulatory program responsible for photoreceptors specification. Finally, we also discuss the possible functions of the Opsin3.2-positive cells based on their molecular fingerprint, and we suggest that they are involved in a variety of signaling pathways, including those entailing the thyrotropin-releasing hormone.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486798PMC
http://dx.doi.org/10.3390/cells12172134DOI Listing

Publication Analysis

Top Keywords

sea urchin
16
photoreceptor cells
8
urchin larvae
8
urchin larva
8
cells
5
single-cell transcriptomic
4
transcriptomic analysis
4
analysis reveals
4
molecular
4
reveals molecular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!