Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Numerous synthetic models of the FeMo-co cluster of nitrogenases have been proposed to find the simplest structure with relevant reactivity. Indeed, such structures are able to perform multi-electrons reduction processes, such as the conversion of N to ammonia, and of CO into methane and alkenes. The most challenging parameter to imitate is indeed the central carbide ligand, which is believed to maintain the integrity of iron sulfide assembly during the course of catalytic cycles. The study proposes the use of bis(diphenylthiophosphinoyl)methanediide (SCS) as an ideal platform for the synthesis of bi- and tetra-metallic iron complexes, in which the iron-carbon interaction is maintained upon structural diversification and redox state changes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.202302130 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!