Contemporary oral tissue engineering strategies involve recombinant human growth factor approaches to stimulate diverse cellular processes including cell differentiation, migration, recruitment, and proliferation at grafted areas. Recombinant human growth factor applications in oral hard and soft tissue regeneration have been progressively researched over the last 25 years. Growth factor-mediated surgical approaches aim to accelerate healing, tissue reconstruction, and patient recovery. Thus, regenerative approaches involving growth factors such as recombinant human platelet-derived growth factor-BB (rhPDGF-BB) and recombinant human bone morphogenetic proteins (rhBMPs) have shown certain advantages over invasive traditional surgical approaches in severe hard and soft tissue defects. Several clinical studies assessed the outcomes of rhBMP-2 in diverse clinical applications for implant site development and bone augmentation. Current evidence regarding the clinical benefits of rhBMP-2 compared to conventional therapies is inconclusive. Nevertheless, it seems that rhBMP-2 can promote faster wound healing processes and enhance de novo bone formation, which may be particularly favorable in patients with compromised bone healing capacity or limited donor sites. rhPDGF-BB has been extensively applied for periodontal regenerative procedures and for the treatment of gingival recessions, showing consistent and positive outcomes. Nevertheless, current evidence regarding its benefits at implant and edentulous sites is limited. The present review explores and depicts the current applications, outcomes, and evidence-based clinical recommendations of rhPDGF-BB and rhBMPs for oral tissue regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/prd.12522 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!