First-Row d Metal Complex Enables Photon Upconversion and Initiates Blue Light-Dependent Polymerization with Red Light.

Angew Chem Int Ed Engl

Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056, Basel, Switzerland.

Published: October 2023

Photosensitizers for sensitized triplet-triplet annihilation upconversion (sTTA-UC) often rely on precious heavy metals, whereas coordination complexes based on abundant first-row transition metals are less common. This is mainly because long-lived triplet excited states are more difficult to obtain for 3d metals, particularly when the d-subshell is only partially filled. Here, we report the first example of sTTA-UC based on a 3d metal photosensitizer yielding an upconversion performance competitive with precious metal-based analogues. Using a newly developed Cr photosensitizer featuring equally good photophysical properties as an Os benchmark complex in combination with an acetylene-decorated anthracene annihilator, red-to-blue upconversion is achievable. The upconversion efficiency under optimized conditions is 1.8 %, and the excitation power density threshold to reach the strong annihilation limit is 5.9 W/cm . These performance factors, along with high photostability, permit the initiation of acrylamide polymerization by red light, based on radiative energy transfer between delayed annihilator fluorescence and a blue light absorbing photo-initiator. Our study provides the proof-of-concept for photon upconversion with elusive first-row analogues of widely employed precious d metal photosensitizers, and for their application in photochemical reactions triggered by excitation wavelengths close to near-infrared.

Download full-text PDF

Source
http://dx.doi.org/10.1002/anie.202311470DOI Listing

Publication Analysis

Top Keywords

photon upconversion
8
polymerization red
8
red light
8
upconversion
6
first-row metal
4
metal complex
4
complex enables
4
enables photon
4
upconversion initiates
4
initiates blue
4

Similar Publications

Ratiometric lanthanide coordination polymers (Ln-CPs) are advanced materials that combine the unique optical properties of lanthanide ions (e.g., Eu, Tb, Ce) with the structural flexibility and tunability of coordination polymers.

View Article and Find Full Text PDF

Controllable Nano-Crystallization in Fluoroborosilicate Glass Ceramics for Broadband Visible Photoluminescence.

Nanomaterials (Basel)

January 2025

Sino-French Hoffmann Institute, School of Basic Medical Science, Guangzhou Medical University, Guangzhou 511436, China.

A transparent fluoroborosilicate glass ceramic was designed for the controllable precipitation of fluoride nanocrystals and to greatly enhance the photoluminescence of active ions. Through the introduction of BO into fluorosilicate glass, the melting temperature was decreased from 1400 to 1050 °C, and the abnormal crystallization in the fabrication process of fluorosilicate glass was avoided. More importantly, the controlled crystallizations of KZnF and KYbF in fluoroborosilicate glass ceramics enhanced the emission of Mn and Mn-Yb dimers by 6.

View Article and Find Full Text PDF

Sum-frequency generation (SFG) enables the coherent upconversion of electromagnetic signals and plays a significant role in mid-infrared vibrational spectroscopy for molecular analysis. Recent research indicates that plasmonic nanocavities, which confine light to extremely small volumes, can facilitate the detection of vibrational SFG signals from individual molecules by leveraging surface-enhanced Raman scattering combined with mid-infrared laser excitation. In this article, we compute the degree of second order coherence ( (0)) of the upconverted mid-infrared field under realistic parameters and accounting for the anharmonic potential that characterizes vibrational modes of individual molecules.

View Article and Find Full Text PDF

Energy Aggregation for Illuminating Upconversion Multicolor Emission Based on Ho Ions.

ACS Appl Mater Interfaces

January 2025

School of Materials Science& Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China.

Lanthanide-doped upconversion luminescent nanoparticles (UCNPs) have garnered extensive attention due to their notable anti-Stokes shifts and superior photostability. Notably, Ho-based UCNPs present a complex energy level configuration, which poses challenges in augmenting their luminescence efficiency. Herein, a rational design strategy was used to enhance the upconversion luminescence intensity of Ho ions by improving the photon absorption ability and energy utilization efficiency.

View Article and Find Full Text PDF

Unleashing the potential of Er-Tm coupling for the regulation of power-dependent multi-color upconversion luminescence.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Huzhou Key Laboratory of Materials for Energy Conversion and Storage, College of Science, Huzhou University, Huzhou 313000, China. Electronic address:

1550 nm-responsive upconversion luminescence (UCL) has attracted increasing attention due to its potential applicability in a new generation of bio-probes and photonic devices. However, regulating multi-color UCL with pump power remains a challenge. In this work, through constructing the coupling between Er and Tm ions and suppressing the energy transfer upconversion process of Er ions, the response of UCL color in Gd(MoO):Er/Tm to pump power is enhanced significantly.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!