Molecular hydrogen (H ) is a clean and renewable fuel that has garnered significant interest in the search for alternatives to fossil fuels. Here, we constructed an artificial DNAzyme composed of cobalt-protoporphyrin IX (CoPP) and G-quadruplex DNA, possessing a unique H O ligand between the CoPP and G-quartet planes. We show for the first time that CoPP-DNAzyme catalyzes photo-induced H production under anaerobic conditions with a turnover number (TON) of 1229 ± 51 over 12 h at pH 6.05 and 10 °C. Compared with free-CoPP, complexation with G-quadruplex DNA resulted in a 4.7-fold increase in H production activity. The TON of the CoPP-DNAzyme revealed an optimal acid-base equilibrium with a pK value of 7.60 ± 0.05, apparently originating from the equilibrium between Co(III)-H and Co(I) states. Our results demonstrate that the H O ligand can augment and modulate the intrinsic catalytic activity of H production catalysts. These systems pave the way to using DNAzymes for H evolution in the direct conversion of solar energy to H from water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cssc.202301244 | DOI Listing |
J Phys Chem B
January 2025
College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.
Under conditions that are close to the real cellular environment, the human telomeric single-stranded overhang (∼200 nt) consisting of tens of TTAGGG repeats tends to form higher order structures of multiple G-quadruplex (G4) blocks. On account of the higher biological relevance of higher order G4 structures, ligand compounds binding to higher order G4 are significant for the drug design toward inhibiting telomerase activity. Here, we study the interaction between a cationic porphyrin derivative, 5,10,15,20-tetra{4-[2-(1-methyl-1-piperidinyl)propoxy]phenyl}porphyrin (T4), and a human telomeric G4-dimer (AG(TAG)) in the mimic intracellular molecularly crowded environment (PEG as a crowding agent) and K or Na solution (i.
View Article and Find Full Text PDFBiosensors (Basel)
January 2025
School of Pharmacy & Biomolecular Sciences, Faculty of Health, Innovation, Technology and Science, Liverpool John Moores University, Liverpool L3 3AF, UK.
G-quadruplex (G4) DNAzymes with peroxidase activities hold potential for applications in biosensing. While these nanozymes are easy to assemble, they are not as efficient as natural peroxidase enzymes. Several approaches are being used to better understand the structural basis of their reaction mechanisms, with a view to designing constructs with improved catalytic activities.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
State Key Laboratory of Frigid Zone Cardiovascular Diseases (SKLFZCD), Research Center for Innovative Technology of Pharmaceutical Analysis, College of Pharmacy, Harbin Medical University, Heilongjiang 150081, PR China.
Surface-enhanced Raman spectroscopy (SERS) has become an indispensable tool for biomolecular analysis, yet the detection of DNA signals remains hindered by spectral interference from citrate ions, which overlap with key DNA features. This study introduces an innovative, ultrasensitive SERS platform utilizing thiol-modified silver nanoparticles (Ag@SDCNPs) that overcomes this challenge by eliminating citrate interference. This platform enables direct, interference-free detection and structural characterization of a wide range of DNA conformations, including single-stranded DNA (ssDNA), double-stranded DNA (dsDNA), i-motif, hairpin, G-quadruplex, and triple-stranded DNA (tsDNA).
View Article and Find Full Text PDFACS Appl Bio Mater
January 2025
Department of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology, Patiala 147001, India.
c-Myc is a transcription factor that is overexpressed in most human cancers. Despite its challenging nature, we have developed a series of naphthalimide-imidazopyrazine conjugates to target c-Myc. The library of synthesized derivatives was tested for their anticancer activity against a nine-panel of cancer cell lines.
View Article and Find Full Text PDFChembiochem
January 2025
Bose Institute - Centenary Campus, Biophysics, P-1/12 CIT Scheme VIIM, Kankurgachi, Centenary Campus, 700054, KOLKATA, INDIA.
The Rous sarcoma virus (RSV) is an onco-retrovirus that infects avian species such as the chicken (Gallus gallus). RSV is the first oncovirus to be described, and the oncogenic activity of this virus is related to the expression of a tyrosine kinase that induces carcinogenic transformation. Interestingly, we have noted that the RSV genome contains various potential G4-forming sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!