microRNAs direct regulation of various metabolic pathways in plants and animals. miRNAs may be useful in developing novel/elite genotypes, with enhanced metabolites and disease resistance. We examined miRNAs in tomato. In tomato, miRNAs in the carotenoid pathway have not been fully elucidated. We examined the potential role of miRNAs in biosynthesis of carotenoids, transcript profiling of miRNAs and their possible targets (genes and transcription factors) at different development stages of tomato using stem-loop PCR and RT-qPCR. We also identified miRNAs targeting key flavonoid genes, such as chalcone isomerase (CHI), and dihydroflavonol-4-reductase (DFR). Distinct expression profiles of miRNAs and their targets were found in fruits of three tomato accessions, suggesting carotenoid regulation by miRNAs at various stages of fruit development. This was also confirmed using HPLC of the carotenoids. The present study may help in understanding possible regulation of carotenoid biosynthesis. The identified miRNAs can be exploited to enhance biosynthesis of different carotenoids in plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/plb.13572 | DOI Listing |
Nano Lett
January 2025
Key Laboratory of Clinical Laboratory Diagnostics (Chinese Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, P. R. China.
Logical analysis of multiple-miRNA expression information and immediate output of diagnostic results facilitates early cancer detection. In this work, we constructed an isothermal molecular classifier capable of performing computations on multiple miRNAs and directly providing diagnosis results. First, we developed linear-after-the-exponential rolling circle amplification (LATE-RCA), a nearly linear isothermal amplification that does not destroy the original quantitative information about miRNAs.
View Article and Find Full Text PDFFront Oncol
January 2025
Department of Colorectal Hernia Surgery, Binzhou Medical University Hospital, Binzhou, Shandong, China.
Background And Objective: MicroRNAs (miRNAs) are implicated in cancer by exerting roles in tumor growth, metastasis, and even drug resistance. The general trends of miRNA research in diverse cancers are not fully understood. In this work, miRNA-related research in colorectal cancer, prostate cancer, leukemia, and brain tumors was analyzed in search of key research trends with clinical potential.
View Article and Find Full Text PDFFront Bioinform
January 2025
Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan, China.
The precise role of lncRNAs in skeletal muscle development and atrophy remain elusive. We conducted a bioinformatic analysis of 26 GEO datasets from mouse studies, encompassing embryonic development, postnatal growth, regeneration, cell proliferation, and differentiation, using R and relevant packages (limma et al.).
View Article and Find Full Text PDFFront Cell Dev Biol
January 2025
Department of Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China.
Pancreatic cancer (PC) remains one of the most lethal malignancies, primarily due to its intrinsic resistance to conventional therapies. MicroRNAs (miRNAs), key regulators of gene expression, have been identified as crucial modulators of drug resistance mechanisms in this cancer type. This review synthesizes recent advancements in our understanding of how miRNAs influence treatment efficacy in PC.
View Article and Find Full Text PDFFront Immunol
January 2025
College of Fisheries, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Huazhong Agricultural University, Wuhan, Hubei, China.
Glycinin-induced foodborne enteritis is a significant obstacle that hinders the healthy development of the aquatic industry. Glycinin causes growth retardation and intestinal damage in hybrid yellow catfish ( ♀ × ♂), but its immune mechanisms are largely unknown. In the current study, five experimental diets containing 0% (CK), 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!