Quantitative susceptibility mapping (QSM) is a unique technique for providing quantitative information on tissue magnetic susceptibility using phase image data. QSM can provide valuable information regarding physiological and pathological processes such as iron deposition, hemorrhage, calcification, and myelin. QSM has been considered for use as an imaging biomarker to investigate physiological status and pathological changes. Although various studies have investigated the clinical applications of QSM, particularly regarding the use of QSM in clinical practice, have not been examined well. This review provides on an overview of the basics of QSM and its clinical applications in neuroradiology. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY: Stage 2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jmri.29010 | DOI Listing |
Sci Rep
December 2024
Department of Mathematics, GC University, Lahore, Pakistan.
In this article, a nonlinear fractional bi-susceptible [Formula: see text] model is developed to mathematically study the deadly Coronavirus disease (Covid-19), employing the Atangana-Baleanu derivative in Caputo sense (ABC). A more profound comprehension of the system's intricate dynamics using fractional-order derivative is explored as the primary focus of constructing this model. The fundamental properties such as positivity and boundedness, of an epidemic model have been proven, ensuring that the model accurately reflects the realistic behavior of disease spread within a population.
View Article and Find Full Text PDFBreast Cancer Res
December 2024
Biostatistics Unit, The Cyprus Institute of Neurology and Genetics, 6 Iroon Avenue, 2371 Ayios Dometios, Nicosia, Cyprus.
Background: The 313-variant polygenic risk score (PRS) provides a promising tool for clinical breast cancer risk prediction. However, evaluation of the PRS across different European populations which could influence risk estimation has not been performed.
Methods: We explored the distribution of PRS across European populations using genotype data from 94,072 females without breast cancer diagnosis, of European-ancestry from 21 countries participating in the Breast Cancer Association Consortium (BCAC) and 223,316 females without breast cancer diagnosis from the UK Biobank.
Background: Considering that the treatment of gout is poor, we performed a Mendelian randomization (MR) study to identify candidate biomarkers and therapeutic targets for gout.
Methods: A drug-targeted MR study was performed for gout by integrating the gout genome-wide association studies (GWAS) summary data and cis expression quantitative trait loci of 2,633 druggable genes from multiple cohorts. Summary data-based Mendelian randomization (SMR) analyses based on transcript and protein levels were further implemented to validate the reliability of the identified potential therapeutic targets for gout.
Int J Antimicrob Agents
December 2024
Department of Clinical Laboratory, Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China. Electronic address:
Aztreonam-avibactam (ATM-AVI) is a promising β-lactam/β-lactamase inhibitor combination with an antimicrobial spectrum covering serine carbapenemase- or metallo-β-lactamase-producing Enterobacterales. Although ATM-AVI has not been widely used in clinical practice, resistance to it in Escherichia coli has been widely reported. In this study, we investigated an ATM-AVI-resistant Klebsiella pneumoniae strain, designated as 1705R, derived from K.
View Article and Find Full Text PDFBiochem Genet
December 2024
College of Medical Laboratory, Dalian Medical University, Dalian, 116044, People's Republic of China.
This study aims to establish a genetic risk assessment model based on a score of short tandem repeats (STRs) of polygenic inheritance. A total of 396 children and their biological parents were collected for STR genotyping. The numbers of tandem repeats of two alleles in one STR locus were assumed to be a quantitative genetic strength for disease incidence.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!