In this study, the large deformation of a backside-supported snap-fit was analyzed. The backside snap-fit pair consisted of mating part and base part. The mating part was a simple cantilever, and the base part had an opening with a supporting bar. The reaction force of the supporting bar was found to be an important parameter for the assembly and separation of the snap-fit. During our analysis, the supporting bar experienced a large deformation with nonlinear elasticity or plastic damage. Finite element analysis was performed. Stress concentration was observed at the root of the supporting bar and at the bent edge of the base part. Three types of specimens were designed and fabricated for experimental verification. The first specimen was a reference design that was fabricated according to the same design concept as the actual product. The second specimen was designed to reduce the stress concentration. The third specimen had an enriched design to increase the supporting force. The reaction force corresponding to the applied displacement was measured using a testing machine. The load exhibited a highly nonlinear behavior and reached a maximum peak value without causing any apparent damage, after which it decreased with plastic damage. Through numerical and experimental analyses, it was found out that the design of the backside-supported snap-fit could be improved by reducing the stress concentration and increasing the stiffness of the supporting bar.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480677 | PMC |
http://dx.doi.org/10.1016/j.heliyon.2023.e19388 | DOI Listing |
Sci Data
January 2025
Lab for Autonomic Neuroscience, Imaging and Cognition (LANIC), Department of Psychosomatic Medicine and Psychotherapy, Jena University Hospital, Jena, Germany.
Heart rate variability (HRV) is a key indicator of cardiac autonomic function, making reliable assessment crucial. To examine the test-retest stability of resting HRV in healthy individuals, fifty participants attended two lab sessions within a week, at the same time of day. After a 5-minute acclimatization period, electrocardiogram and respiration were recorded at rest.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Indiana University School of Medicine, Indianapolis, IN, USA.
Background: Genome-wide association studies (GWAS) identified the ATP binding cassette subfamily A member 7 (ABCA7) gene as increasing risk for Alzheimer's disease (AD). ABC proteins transport various molecules across extra and intra-cellular membranes. ABCA7 is part of the ABC1 subfamily and is expressed in brain cells including neurons, astrocytes, microglia, endothelial cells and pericytes.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Determining the precise genetic mechanisms that contribute to LOAD, both in coding and noncoding variants, will enable a deeper understanding of pathogenesis and advance preclinical models for the testing of targeted therapeutics.
Methods: We have introduced candidate genetic variants in the EPHA1, BIN1, CD2AP, SCIMP, KLOTHO, PTK2B, ADAMTS4, IL1RAP, IL34, and PTPRB loci into a sensitized mouse model already harboring humanized amyloid-beta, APOE4, and Trem2.R47H alleles knocked in to a C57BL/6J background.
Alzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Mechanisms driving cerebrovascular decline during Alzheimer's disease and related dementias (ADRD) are poorly understood. Methylenetetrahydrofolate reductase (MTHFR) is an enzyme in the folate/methionine pathway. Variants in MTHFR, notably 677C>T, are associated with ADRD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Jackson Laboratory, Bar Harbor, ME, USA.
Background: Alzheimer's disease (AD) therapeutics have largely been unsuccessful in alleviating disease burden in those afflicted by the disease. The TREAT-AD Consortium is an international group of academic researchers dedicated to identifying novel molecular targets for AD from underexplored areas of disease linked pathology.
Method: Utilizing a top-down expert curation approach of organizing Gene Ontology terms into endophenotypes of AD, we developed 19 biological domains.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!