A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The role of water in reactions catalysed by hydrolases under conditions of molecular crowding. | LitMetric

The role of water in reactions catalysed by hydrolases under conditions of molecular crowding.

Biophys Rev

Facultad de Ciencias Exactas, Físicas y Naturales, ICTA and Departamento de Química, Cátedra de Química Biológica, Universidad Nacional de Córdoba, Av. Vélez Sársfield 1611, 5016 Córdoba, Argentina.

Published: August 2023

Under macromolecular crowding (MC) conditions such as cellular, extracellular, food and other environments of biotechnological interest, the thermodynamic activity of the different macromolecules present in the system is several orders of magnitude higher than in dilute solutions. In this state, the diffusion rates are affected by the volume exclusion induced by the crowders. Immiscible liquid phases, which may arise in MC by liquid-liquid phase separation, may induce a dynamic confinement of reactants, products and/or enzymes, tuning reaction rates. In cellular environments and other crowding conditions, membranes and macromolecules provide, on the whole, large surfaces that can perturb the solvent, causing its immobilisation by adsorption in the short range and also affecting the solvent viscosity in the long range. The latter phenomenon can affect the conformation of a protein and/or the degree of association of its protomers and, consequently, its activity. Changes in the water structure can also alter the enzyme-substrate interaction, and, in the case of hydrolytic enzymes, where water is one of the substrates, it also affects the reaction mechanism. Here, we review the evidence for how macromolecular crowding affects the catalysis induced by hydrolytic enzymes, focusing on the structure and dynamics of water.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480385PMC
http://dx.doi.org/10.1007/s12551-023-01104-2DOI Listing

Publication Analysis

Top Keywords

macromolecular crowding
8
crowding conditions
8
hydrolytic enzymes
8
role water
4
water reactions
4
reactions catalysed
4
catalysed hydrolases
4
hydrolases conditions
4
conditions molecular
4
crowding
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!