The growth of the human population brought about the global intensification of aquacultural production, and aquaculture became the fastest growing animal husbandry sector. Effluent from aquaculture is an anthropogenic environmental burden, containing organic matter, nutrients and suspended solids that affect water quality especially in the water bodies of high biodiversity and conservation value. Water quality assessment often relies on bioindicators, analysing changes in taxonomic diversity of various freshwater organismal groups. Stepping beyond taxon diversity, we used functional and phylogenetic diversities of rotifers to identify factors affecting their community organization in response to an aquaculture effluent gradient in the largest oxbow lake in the Carpathian Basin, Hungary. Sampling was carried out three times per season at five points along a 3.5 km section of the oxbow lake, including the point of effluent inflow. We used eight traits to evaluate functional diversity: body size, trophi type, feeding mode, protection type, body wall type, corona type, habitat preference and tolerance level. Functional and phylogenetic distances among the 24 species identified indicated trait conservatism. Rotiferan diversity increased with increasing distance from the point of influx in spring and summer. Among the factors affecting community organization in spring and summer, we find examples of environmental filtering, while in autumn the role of biotic interaction is more frequent. Under nutrient-rich conditions in spring and summer, organisms belonging to the same functional group were dominant, whereas under oligotrophic conditions, more diverse but less abundant groups were present. Considering functional and phylogenetic traits allowed us to identify organising forces of rotifer communities in the largest oxbow lake of the Hungarian Lowland.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480067PMC
http://dx.doi.org/10.1002/ece3.10503DOI Listing

Publication Analysis

Top Keywords

functional phylogenetic
16
oxbow lake
12
spring summer
12
aquaculture effluent
8
water quality
8
factors community
8
community organization
8
largest oxbow
8
functional
6
diversity
5

Similar Publications

Cotton leaf curl disease (CLCuD) is a major constraint for production of cotton (Gossypium sp.) in Northwest India. CLCuD is caused by a monopartite, circular ssDNA virus belonging to the genus Begomovirus in association with betasatellites and alphasatellites, and ttransmitted by a whitefly vector (Bemisia tabaci).

View Article and Find Full Text PDF

Nematodes are abundant and ubiquitous animals which are poorly known at intraspecific level. This work represents the first attempt to fill the gap on basic knowledge of genetic variability and differentiation in Protostrongylus oryctolagi, a nematode parasite of lagomorphs. 68 cox1 sequences were obtained from brown hares collected in five locations in Northern and Central Italy, highlighting the presence of a high amount of genetic variation inside this species.

View Article and Find Full Text PDF

Tequila bats (genus Leptonycteris) have gained attention for their critical role in pollinating different plant species, especially Agave spp. and columnar cacti. Leptonycteris nivalis is the largest nectar-feeding bat in the Americas, and the females exhibit migratory behavior during the breeding season.

View Article and Find Full Text PDF

sp. nov., isolated from human epidermis.

Int J Syst Evol Microbiol

January 2025

Department of Bio Health Science, Changwon National University, Changwon, Gyeongnam 51140, Republic of Korea.

Five pink-pigmented bacterial strains, isolated from human skin and classified within the genus , were examined. Among them, four were identified as , while strain OT10 was deemed to be a potential novel species. Strain OT10 exhibited characteristics, such as Gram-stain-negative, oxidase positive, motile, strictly aerobic and rod shaped.

View Article and Find Full Text PDF

Characterization and functional analysis of type III polyketide synthases in Selaginella moellendorffii.

Planta

January 2025

Key Laboratory of Chemical Biology of Natural Products, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, 250012, Shandong, China.

The evolutionary conservation of type III polyketide synthases (PKS) in Selaginella has been elucidated, and the critical amino acid residues of the anther-specific chalcone synthase-like enzyme (SmASCL) have been identified. Selaginella species are the oldest known vascular plants and a valuable resource for the study of metabolic evolution in land plants. Polyketides, especially flavonoids and sporopollenin precursors, are essential prerequisites for plant land colonization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!