The defeat of the central motor neuron leads to the motor disorders. Patients lose the ability to control voluntary muscles, for example, of the upper limbs, which introduces a fundamental dissonance in the possibility of daily use of a computer or smartphone. As a result, the patients lose the ability to communicate with other people. The article presents the most popular paradigms used in the brain-computer-interface speller system and designed for typing by people with severe forms of the movement disorders. Brain-computer interfaces (BCIs) have emerged as a promising technology for individuals with communication impairments. BCI-spellers are systems that enable users to spell words by selecting letters on a computer screen using their brain activity. There are three main types of BCI-spellers: P300, motor imagery (MI), and steady-state visual evoked potential (SSVEP). However, each type has its own limitations, which has led to the development of hybrid BCI-spellers that combine the strengths of multiple types. Hybrid BCI-spellers can improve accuracy and reduce the training period required for users to become proficient. Overall, hybrid BCI-spellers have the potential to improve communication for individuals with impairments by combining the strengths of multiple types of BCI-spellers. In conclusion, BCI-spellers are a promising technology for individuals with communication impairments. P300, MI, and SSVEP are the three main types of BCI-spellers, each with their own advantages and limitations. Further research is needed to improve the accuracy and usability of BCI-spellers and to explore their potential applications in other areas such as gaming and virtual reality.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10480564 | PMC |
http://dx.doi.org/10.3389/fnhum.2023.1216648 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!