Introduction: In recent decades, drug delivery applications have extensively utilized hydrogel systems based on natural polymers. Among the numerous biopolymer-based hydrogel drug delivery systems reported, a novel pectin-like substance was extracted from fig leaves and copolymerized with chitosan.

Method: The hydrogel was reformed into microspheres using glutaraldehyde (chemical cross-linker) and sodium hexametaphosphate (physical cross-linker). The extracted polysaccharide and the prepared hydrogels were characterized by FTIR, GC/MS, SEC/MALS/DRI as well as XRD, SEM, BET, and thermal analysis. SEM images revealed the formation of porous microspheres with an average size of 50 μm in diameter. Degrees of swelling in pH7 at 35°C have shown the hydrogels reached two to three times their weights. This has been reflected in their ability to load drugs or any other chemicals. The loading formula shows that hydrogels have maximum loading efficiency more than one-third of the weight of hydrogel. The antimicrobial ciprofloxacin was used as a model for loading on prepared hydrogels. The loaded hydrogels were tested for their biological activities against staphylococcus aureus (S. aureus) bacteria. The antimicrobial growth inhibition zone of the cultured (S. aureus) by ciprofloxacin-loaded hydrogel was followed, which shows controlled growth in inhibition zone sizes and for long time intervals. Results showed that the pectin-chitosan hydrogels exhibited significant antibacterial activity against gram - positive bacteria (S. aureus), with an inhibition zone of 45 mm for (CH-co-FLP)/GLU hydrogel.

Result: In vitro, the ciprofloxacin-loaded hydrogels were studied and the cumulative release of ciprofloxacin under suitable conditions was found in a controlled manner and kept release for a long time interval. Data exhibited that the cumulative release profile of ciprofloxacin from the hydrogel demonstrated sustained release over 48 hours, with a value of 6.9% released within the first 24 hours and 7.0 and 6.9% % released at the end of the study for the (CH-co-FLP)/GLU and (CH-co-FLP)/SMP hydrogels, respectively.

Conclusion: The novel pectin-chitosan hydrogels hold the potential to enhance the quality of life for numerous patients by minimizing the need for frequent intake of chronic medications.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1567201821666230901153513DOI Listing

Publication Analysis

Top Keywords

inhibition zone
12
hydrogels
10
drug delivery
8
prepared hydrogels
8
growth inhibition
8
long time
8
pectin-chitosan hydrogels
8
cumulative release
8
hours 69%
8
69% released
8

Similar Publications

CircRNA CDR1AS promotes cardiac ischemia-reperfusion injury in mice by triggering cardiomyocyte autosis.

J Mol Med (Berl)

January 2025

Cardiovascular Surgery Department of The First Affiliated Hospital of Harbin Medical University, and Pharmacology Department of Pharmacy College of Harbin Medical University, Harbin, 150081, China.

Myocardial ischemia/reperfusion (IR) injury is a common adverse event in the clinical treatment of myocardial ischemic disease. Autosis is a form of cell death that occurs when autophagy is excessive in cells, and it has been associated with cardiac IR damage. This study aimed to investigate the regulatory mechanism of circRNA CDR1AS on autosis in cardiomyocytes under IR.

View Article and Find Full Text PDF

The rise of antimicrobial-resistant microorganisms (AMR) poses a significant global challenge to human health and economic stability. In response, various scientific communities are seeking safe alternatives to antibiotics. This study comprehensively investigates the antibacterial effects of red dye derived from Monascus purpureus against three bacterial pathogens: Salmonella typhimurium ATCC14028, Escherichia coli ATCC8739, and Enterococcus faecalis ATCC25923.

View Article and Find Full Text PDF

A new method was developed to quickly produce carboxymethyl hemicellulose (CM-Hemi) and fluorescent nitrogen-doped carbon dots (N-CDs) from sugarcane bagasse (SB). These materials were then combined with calcium chloride (CaCl₂) to create hydrogel sensors with antibacterial and antifungal properties. The CM-Hemi@Ca-N-CDs hydrogel was effective against both Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria compared to CM-Hemi@Ca which give no antibacterial activity.

View Article and Find Full Text PDF

Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study.

J Photochem Photobiol B

December 2024

Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America; Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America.

Introduction: Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).

View Article and Find Full Text PDF

The current research was conducted to synthesize Parietaria alsinifolia-mediated iron oxide nanoparticles (P.A@FeONPs) using the green and eco-friendly protocol. The biosynthesized P.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!