Background: Cervical cancer the fourth most frequently diagnosed cancer and the fourth leading cause of cancer death in women, with an estimated 604,000 new cases and 342,000 deaths worldwide in 2020 for high rates of recurrence and metastasis. Identification of novel targets could aid in the prediction and treatment of cervical cancer. NADPH oxidase 1 (NOX1) gene-mediated production of reactive oxygen species (ROS) could induce migration and invasion of cervical cancer cells. Tumor-associated macrophages (TAMs) play important roles in cervical cancer. Tumor cell-derived exosomes mediate signal transduction between the tumor and tumor microenvironment. Elucidation of the mechanisms of NOX1-carrying exosomes involved in the regulation of TAMs may provide valuable insights into the progression of cervical cancer.

Methods: Uniformly standardized mRNA data of pan-carcinoma from the UCSC database were downloaded. Expression of NOX1 in tumor and adjacent normal tissues for each tumor type was calculated using R language software and significant differences were analyzed. SNP data set were downloaded for all TCGA samples processed using MuTect2 software from GDC. Cell experiment and animal tumor formation experiment were used to evaluate whether exosomal NOX1 stimulating ROS production to promote M2 polarization of TAM in cervical cancer.

Results: NOX1 is highly expressed with a low mutational frequency in pan-carcinoma. Upregulation of NOX1 may be associated with infiltration of M2-type macrophages in cervical cancer tissues, and NOX1 promotes malignant features of cervical cancer cells by stimulating ROS production. Exosomal NOX1 promotes M2 polarization of by stimulating ROS production. Exosomal NOX1 enhances progression of cervical cancer and M2 polarization in vivo by stimulating ROS production.

Conclusion: Exosomal NOX1 promotes TAM M2 polarization-mediated cancer progression through stimulating ROS production in cervical cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483767PMC
http://dx.doi.org/10.1186/s40001-023-01246-9DOI Listing

Publication Analysis

Top Keywords

cervical cancer
36
stimulating ros
24
exosomal nox1
20
ros production
20
nox1 promotes
16
cancer
13
cervical
11
nox1
9
polarization-mediated cancer
8
cancer progression
8

Similar Publications

MTIOT: Identifying HPV subtypes from multiple infection data.

Comput Struct Biotechnol J

December 2024

Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai 200031, China.

Persistent infection with high-risk human papillomavirus (hrHPV) is a major cause of cervical cancer. The effectiveness of current HPV-DNA testing, which is crucial for early detection, is limited in several aspects, including low sensitivity, accuracy issues, and the inability to perform comprehensive hrHPV typing. To address these limitations, we introduce MTIOT (Multiple subTypes In One Time), a novel detection method that utilizes machine learning with a new multichannel integration scheme to enhance HPV-DNA analysis.

View Article and Find Full Text PDF

The most common STD that triggers cervical cancer is the human papillomavirus. More than 20 types of human papillomavirus (HPV) can induce uterine cervical cancer. Almost all women acquire genital HPV infection soon after their first intercourse, with most of them clearing the virus within 3 years.

View Article and Find Full Text PDF

Purpose: Human papillomavirus (HPV) infection is the major cause of (pre)malignant cervical lesions. We previously demonstrated that Vvax001, a replication-incompetent Semliki Forest virus (SFV) vaccine encoding HPV type 16 (HPV16) E6 and E7, induced potent anti-E6 and -E7 cytotoxic T-cell responses. Here, we investigated the clinical efficacy of Vvax001 in patients with HPV16-positive cervical intraepithelial neoplasia grade 3 (CIN3).

View Article and Find Full Text PDF

Background: Ovarian cancer is a leading cause of mortality worldwide. The third most prevalent gynecological cancer globally, following cervical and uterine cancer, and the third leading cause of cancer-related mortality among women in Sub-Saharan Africa, including Ethiopia. The time ovarian cancer patients have to wait between diagnosis and initiation of treatment are the indicators of quality in cancer care and influence patient outcomes.

View Article and Find Full Text PDF

Association of blood group types and clinico-pathological features of gynecological cancers (GCs).

BMC Cancer

January 2025

Molecular Diseases & Diagnostics Division, Infinity Biochemistry, Infinity Solutions Unlimited, Sajjad Abad, Chattabal, Srinagar, 190010, Kashmir, India.

Background: Gynecological cancers (GCs) affect the reproductive system of females, and are of multiple types depending on the affected organ most common of which are cervical, endometrial, ovarian cancers. Among different risk factors for GCs, ABO blood group system is considered as one of the pivotal contributing factors for increased susceptibility of GCs. The aim of our study was to report on the demographics of GC patients and to investigate the relationship between the ABO blood group system and the risk of acquiring GC in our population.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!