Background: Severe fever with thrombocytopenia syndrome (SFTS) is an infectious disease caused by the Dabie bandavirus, [or SFTS virus (SFTSV)] that has become increasingly widespread since it was first reported in 2009. The SFTSV comprises three essential single-stranded RNA gene segments, with the S segment encoding the nucleocapsid (N) protein. Since the N protein is the most abundant and stable viral protein, it is a useful diagnostic marker of infection. Various SFTSV N-protein-based detection methods have been developed. However, given the limited research on antibodies of an SFTSV N-protein, here we report the characterization of the antibodies against SFTSV N protein especially their mapping results which is essential for more efficient and optimized detection of SFTSV.

Methods: To generate SFTSV-N-protein-specific monoclonal antibodies, recombinant full-length SFTSV N protein was expressed in E. coli, and the purified N protein was immunized to mice. The binding epitope positions of the antibodies generated were identified through binding-domain mapping. An antibody pair test using a lateral flow immunoassay (LFIA) was performed to identify effective diagnostic combinations of paired antibodies.

Results: Nine monoclonal antibodies specific for the SFTSV N protein were generated. Antibodies #3(B4E2) and #5(B4D9) were specific for sequential epitopes, while the remainder were specific for conformational epitopes. Antibody #4(C2G1) showed the highest affinity for the SFTSV N protein. The binding domain mapping results indicated the binding regions of the antibodies were divided into three groups. The antibody pair test demonstrated that #3(B4E2)/#4(C2G1) and #4(C2G1)/#5(B4D9) were effective antibody pairs for SFTSV diagnosis.

Conclusions: Effective virus detection requires at least two strong antibodies recognizing separate epitope binding sites of the virus antigen. Here, we generated SFTSV-N-protein-specific monoclonal antibodies and subsequently performed epitope mapping and an antibody pair test to enhance the diagnostic efficiency and accuracy of SFTSV. Confirmation of epitope mappings and their combination immune response to the N protein provide valuable information for effective detection of SFTSV as well as can respond actively to detect a variant SFTSV.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10486111PMC
http://dx.doi.org/10.1186/s12985-023-02173-1DOI Listing

Publication Analysis

Top Keywords

sftsv protein
16
sftsv
13
monoclonal antibodies
12
antibody pair
12
pair test
12
protein
9
antibodies
9
fever thrombocytopenia
8
thrombocytopenia syndrome
8
antibodies sftsv
8

Similar Publications

Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease with a high mortality rate that is often underdiagnosed due to the limitations of current laboratory testing. Timely diagnosis and early identification of severe cases are crucial to improving patient outcomes and overall survival rates. This study aimed to evaluate the efficacy of two transcripts, IFI44L and PI3, in the early differentiation between SFTS virus (SFTSV) infection and bacterial sepsis, as well as in the prompt identification of severe cases during epidemic seasons.

View Article and Find Full Text PDF

Background: Severe fever with thrombocytopenia syndrome (SFTS) is a rapidly progressive infectious disease triggered by a novel bunyavirus (SFTSV). Despite the critical role of host lipid metabolism in viral infections, research on dyslipidemia in SFTS remains limited.

Methods: This retrospective study included 433 SFTS patients, who were stratified into survival group (n = 365) and death group (n = 68) and who were treated at the Shandong Public Health Clinical Center from September 2021 to December 2023.

View Article and Find Full Text PDF

N6-methyladenosine RNA modification promotes Severe Fever with Thrombocytopenia Syndrome Virus infection.

PLoS Pathog

November 2024

Jiangsu Key Laboratory of Infection and Immunity, MOE Key Laboratory of Geriatric Diseases and Immunology, The Forth Affiliated Hospital of Soochow University, Institutes of Biology and Medical Sciences, Suzhou Medical College of Soochow University, Suzhou, China.

Severe Fever with Thrombocytopenia Syndrome Virus (SFTSV), a novel bunyavirus primarily transmitted by Haemaphysalis longicornis, induces severe disease with a high mortality rate. N6-methyladenosine (m6A) is a prevalent internal chemical modification in eukaryotic mRNA that has been reported to regulate viral infection. However, the role of m6A modification during SFTSV infection remains elusive.

View Article and Find Full Text PDF

Host specific sphingomyelin is critical for replication of diverse RNA viruses.

Cell Chem Biol

December 2024

State Key Laboratory of Pathogen and Biosecurity, Academy of Military Medical Sciences, Beijing 100071, China. Electronic address:

Lipids and lipid metabolism play an important role in RNA virus replication, which typically occurs on host cell endomembrane structures in the cytoplasm through mechanisms that are not yet fully identified. We conducted genome-scale CRISPR screening and identified sphingomyelin synthase 1 (SMS1; encoded by SGMS1) as a critical host factor for infection by severe fever with thrombocytopenia syndrome virus (SFTSV). SGMS1 knockout reduced sphingomyelin (SM) (d18:1/16:1) levels, inhibiting SFTSV replication.

View Article and Find Full Text PDF
Article Synopsis
  • Two plasmid constructs, pJHL270 and pJHL305, were created to jointly express SFTSV glycoproteins in both bacterial and mammalian systems, controlled by specific promoters.
  • The Gn/Gc antigens were optimized from SFTSV sequences found in South Korea, with full antigens expressed in mammalian cells for better protein modifications.
  • The constructs were tested in mice, leading to effective immune responses and reduced viral loads, showcasing the potential of using Salmonella as a vaccine delivery method for SFTSV.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!