Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The ongoing emergence of COVID-19 and the maturation of cold chain technology, have aided in the rapid development of the fresh produce e-commerce industry. Taking into account the characteristics of consumers' demand for fresh products, this paper constructs a location allocation model of a front warehouse for fresh e-commerce with the objective of minimizing the total cost. An improved immune optimization algorithm is proposed in this paper, and the effectiveness of the proposed algorithm is demonstrated by a real case study. The results show that the improved immune optimization algorithm outperforms the traditional genetic algorithm in terms of solution accuracy; the proposed location model can effectively help fresh produce e-commerce enterprises open new front-end warehouses when demand is increasing, as well as provide optimal economic decision-making for front warehouse layout.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3934/mbe.2023667 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!