Hepatic steatosis aggravates atherosclerosis via small extracellular vesicle-mediated inhibition of cellular cholesterol efflux.

J Hepatol

Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou, People's Republic of China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou, People's Republic of China. Electronic address:

Published: December 2023

Background & Aims: While it is recognized that non-alcoholic fatty liver disease (NAFLD) is associated with cardiovascular disease (CVD), how NAFLD affects the development and progression of CVD remains unclear and debatable. Hence, we aimed to determine the role of steatotic hepatocyte-derived small extracellular vesicles (sEVs) in foam cell formation and atherosclerosis progression.

Methods: sEVs from steatotic hepatocytes were isolated and characterized. MicroRNA (miRNA) deep sequencing was utilized to identify functional miRNA in sEVs. Lastly, we conducted a cross-sectional study on patients with NAFLD to validate these findings.

Results: Treatment of sEVs from steatotic hepatocytes promoted macrophage-derived foam cell formation and atherosclerosis progression via inhibition of ABCA1-mediated cholesterol efflux. Macrophage-specific deletion of Abca1 in ApoE mice abolished the role of steatotic hepatocyte-derived sEVs in atherosclerosis progression. In addition, hepatocyte-specific deletion of Rab27a, which is the key GTPase regulating sEV release, significantly ameliorated high-fat, high-cholesterol diet-induced atherosclerosis progression in ApoE mice. The miRNA deep sequencing results showed that miR-30a-3p was enriched in sEVs from steatotic hepatocytes. miR-30a-3p directly targeted the 3' untranslated region of ABCA1 to inhibit ABCA1 expression and cholesterol efflux. Treatment with antagomiR-30a-3p significantly attenuated atherosclerosis progression in high-fat, high-cholesterol diet-fed ApoE mice. Moreover, serum sEVs from patients with NAFLD and sEV-miR-30a-3p expression were associated with decreased cholesterol efflux levels in foam cells.

Conclusion: Steatotic hepatocyte-derived sEVs promote foam cell formation and facilitate atherogenesis via the miR-30a-3p/ABCA1 axis. Reducing sEV secretion by steatotic hepatocytes or targeting miR-30a-3p may be potential therapeutic approaches to slow the progression of NAFLD-driven atherosclerosis.

Impact And Implications: The presence of hepatic steatosis is strongly correlated with the risk of cardiovascular disease and cardiovascular events, yet the molecular mechanisms linking steatosis to progression of atherosclerosis are unclear. Herein, we identified small extracellular vesicles from steatotic hepatocytes as a trigger that accelerated the progression of atherosclerosis. Steatotic hepatocyte-derived small extracellular vesicles promoted foam cell formation via the miR-30a-3p/ABCA1 axis. Our findings not only provide mechanistic insight into non-alcoholic fatty liver disease-driven atherosclerosis but also provide potential therapeutic targets for patients with atherosclerosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jhep.2023.08.023DOI Listing

Publication Analysis

Top Keywords

steatotic hepatocytes
20
small extracellular
16
cholesterol efflux
16
steatotic hepatocyte-derived
16
foam cell
16
cell formation
16
atherosclerosis progression
16
extracellular vesicles
12
sevs steatotic
12
apoe mice
12

Similar Publications

Background: The incidence of metabolic-associated steatotic liver disease in patients with chronic hepatitis B is increasing annually; however, the interaction between hepatitis B virus (HBV) infection and lipid metabolism remains unclear. This study attempted to clarify whether fatty acid metabolism regulation could alleviate mitochondrial dysfunction caused by HBV infection.

Methods: Public gene set of human livers was analyzed, and a proteomic analysis on mouse livers was conducted to explore metabolic disorders and affected organelles associated with HBV infection.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is characterized by the accumulation of triglycerides within hepatocytes, which can progress to more severe conditions, such as metabolic dysfunction-associated steatohepatitis (MASH), which may include progressive fibrosis, leading to cirrhosis, cancer, and death. This goal of this review is to highlight recent research showing the potential of mesenchymal stem cell-derived extracellular vesicles (MSC-EVs) in reducing the key pathogenic pathways of MASLD or MASH. Relevant published studies were identified using PubMed with one or more of the following search terms: MASLD, MASH, NAFLD, NASH, exosome, extracellular vesicle (EV), therapy, and/or mesenchymal stem cells (MSC).

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic liver disease characterized by hepatic lipid accumulation, and echinacoside (ECH) has demonstrated antioxidant and anti-inflammatory effects across multiple conditions, it has demonstrated hepatoprotective effects. Ferroptosis represents a novel mechanism of cell demise, differing from apoptosis and autophagy. Emerging research indicates that ferroptosis in hepatocytes plays a role in the development of alcoholic liver disease.

View Article and Find Full Text PDF

Citrin Deficiency (CD) is caused by inactivation of SLC25A13, a mitochondrial membrane protein required to move electrons from cytosolic NADH to the mitochondrial matrix in hepatocytes. People with CD do not like sweets. We discovered that SLC25A13 loss causes accumulation of glycerol-3-phosphate (G3P), which activates carbohydrate response element binding protein (ChREBP) to transcribe FGF21, which acts in the brain to restrain intake of sweets and alcohol, and to transcribe key genes of lipogenesis.

View Article and Find Full Text PDF

Hormone replacement therapy for steatotic liver management after surgical menopause.

Clin J Gastroenterol

January 2025

Department of Medicine, Division of Gastroenterology and Hepatology, Shinshu University School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.

Although steatotic liver onset after natural menopause has been reported, evidence on the clinical course and treatment options for steatotic liver after surgical menopause is scarce. A 34-year-old woman with a history of severe obesity presented to our department with liver dysfunction following total hysterectomy and bilateral oophorectomy. Her serum estradiol level was notably low at 22 pg/mL, and a liver biopsy revealed significant fatty degeneration, lobular inflammation, hepatocyte ballooning, and stage F1 fibrosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!