Immunogold labeling in transmission electron microscopy (TEM) utilizes the high electron density of gold nanoparticles conjugated to proteins to identify specific antigens in biological samples. In this work we applied the concept of immunogold labeling for the labeling of negatively charged phospholipids, namely phosphatidylserine, by a simple protocol, performed entirely in the liquid-phase, from which cryo-TEM specimens can be directly prepared. Labeling included a two-step process using biotinylated annexin-V and gold-conjugated streptavidin. We initially applied it on liposomal systems, demonstrating its specificity and selectivity, differentiating between 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) and 1,2-dioleoyl-sn-glycero-3-phospho-l-serine (DOPS) membranes. We also observed specific labeling on extracellular vesicle samples isolated from THP1 cells and from MDA-468 cells, which underwent stimulations. Finally, we compared the levels of annexin-V labeling on the cells vs. on their isolated EVs by flow cytometry and found a good correlation with the cryo-TEM results. This simple, yet effective labeling technique makes it possible to differentiate between negatively charged and non-negatively charged membranes, thus shillucidating their possible EV shedding mechanism.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jsb.2023.108025 | DOI Listing |
Int J Mol Sci
January 2025
Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, 9 Bankowa St., 40-007 Katowice, Poland.
Carnivorous plants have fascinated botanists and ecologists with their various unusual adaptations in organ structure, physiology, and complex interactions with other organisms since the time of Charles Darwin. Species of the genus (bladderworts, family Lentibulariaceae) are carnivorous plants that prey mainly on invertebrates using traps (bladders) of leaf origin. In the traps, there are glandular trichomes called quadrifids, which produce digestive enzymes and absorb the products of prey digestion.
View Article and Find Full Text PDFBMC Biol
January 2025
College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
Background: Grape (Vitis vinifera) crops encounter significant challenges in overcoming bud endodormancy in warm winter areas worldwide. Research on the mechanisms governing bud dormancy release has focused primarily on stress regulation; however, cell wall regulation of bud meristem regrowth mechanism during the dormancy release remains obscure.
Results: In this study, transmission electron microscopy revealed significant changes in the grape bud cell wall following hydrogen cyanamide (HC) treatment, accompanied by an increase in β-1,3-glucanase activity.
J Comp Neurol
January 2025
Graduate Program in Molecular and Systems Pharmacology, Emory University, Atlanta, Georgia, USA.
Glutamate delta receptor 1 (GluD1) is a unique synaptogenic molecule expressed at excitatory and inhibitory synapses. The lateral habenula (LHb), a subcortical structure that regulates negative reward prediction error and major monoaminergic systems, is enriched in GluD1. LHb dysfunction has been implicated in psychiatric disorders such as depression and schizophrenia, both of which are associated with GRID1, the gene that encodes GluD1.
View Article and Find Full Text PDFJ Histochem Cytochem
January 2025
Department of Veterinary Anatomy, College of Bioresource Sciences, Nihon University, Fujisawa, Japan.
SummaryPrevious studies have suggested that chromogranin A (CgA) is a partner molecule of secretogranin III (SgIII). In mouse pituitary corticotroph-derived AtT-20 cells, SgIII plays a role in sorting CgA/hormone aggregates into secretory granules (SGs). Although CgA expression is equivocal, CgB is clearly detectable in the rat pituitary corticotrophs.
View Article and Find Full Text PDFJ Virol
December 2024
National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Wuhan, China.
is a relatively new viral family that was established nearly 5 years ago, but their viral morphologies (naked or encapsidated) remain controversial since only one member namely, filamentous virus 1 (CcFV1), was identified as being encapsidated in filamentous virions. Here, three novel double-stranded RNA (dsRNA) viruses belonging to the family were identified in three phytopathogenic fungal strains and tentatively named -sinensis polymycovirus 1 (PcsPmV1), and polymycovirus 1 and 2 (PhcPmV1 and 2), respectively. PcsPmV1 and PhcPmVs have five or six genomic dsRNAs, ranging from 1,055 to 2,405 bp, encoding five or seven putative open reading frames (ORFs), of which ORF1 encodes an RNA-dependent RNA polymerase, ORF5 encodes a prolein-alanine-serine-rich (P-A-S-rich) protein behaving as coat protein (CP); and dsRNAs 4 and 6 encode putative proteins with unknown functions and share no detectable identities with known viral sequences.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!