Short tandem repeats (STRs) are consecutive repetitions of one to six nucleotide motifs. They are hypervariable due to the high prevalence of repeat unit insertions or deletions primarily caused by polymerase slippage during replication. Genetic variation at STRs has been shown to influence a range of traits in humans, including gene expression, cancer risk, and autism. Until recently STRs have been poorly studied since they pose significant challenges to bioinformatics analyses. Moreover, genome-wide analysis of STR variation in population-scale cohorts requires large amounts of data and computational resources. However, the recent advent of genome-wide analysis tools has resulted in multiple large genome-wide datasets of STR variation spanning nearly two million genomic loci in thousands of individuals from diverse populations. Here we present WebSTR, a database of genetic variation and other characteristics of genome-wide STRs across human populations. WebSTR is based on reference panels of more than 1.7 million human STRs created with state of the art repeat annotation methods and can easily be extended to include additional cohorts or species. It currently contains data based on STR genotypes for individuals from the 1000 Genomes Project, H3Africa, the Genotype-Tissue Expression (GTEx) Project and colorectal cancer patients from the TCGA dataset. WebSTR is implemented as a relational database with programmatic access available through an API and a web portal for browsing data. The web portal is publicly available at https://webstr.ucsd.edu.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmb.2023.168260 | DOI Listing |
Forensic Sci Int Genet
January 2025
Forensic DNA Division, National Forensic Service, Wonju, South Korea. Electronic address:
Y-chromosomal short tandem repeats (Y-STRs) at rapidly mutating (RM) loci have been suggested as tools for differentiating paternally related males. RMplex is a recently developed system that incorporates 26 RM loci and four fast-mutating (FM) loci, targeting 44 male-specific loci. Here, we evaluated the RMplex by estimating Y-STR mutation rates and the overall differentiation rates for 542 Korean father-son pairs, as well as the genetic population values for 409 unrelated males.
View Article and Find Full Text PDFClin Transl Med
January 2025
Unit of Molecular Biology, Georges-François Leclerc Cancer center, UNICANCER, Dijon, France.
Background: Molecular diagnosis has become highly significant for patient management in oncology.
Methods: Here, 30 well-characterized clinical germline samples were studied with adaptive sampling to enrich the full sequence of 152 cancer predisposition genes. Sequencing was performed on Oxford Nanopore (ONT) R10.
Clin Kidney J
January 2025
Department of Clinical Genetics, Lillebaelt Hospital, University Hospital of Southern Denmark, Vejle, Denmark.
Background: Frameshift variants in the variable number tandem repeat region of () cause autosomal dominant tubulointerstitial kidney disease (ADTKD-) but are challenging to detect. We investigated the prevalence in patients with kidney failure of undetermined aetiology and compared Danish families with ADTKD-.
Methods: We recruited patients with suspected kidney failure of undetermined aetiology at ≤50 years and excluded those with a clear-cut clinical or histopathological kidney diagnoses or established genetic kidney diseases identified thorough medical record review.
Mol Microbiol
January 2025
Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
The distance between the ribosome and the RNA polymerase active centers, known as the mRNA loop length, is crucial for transcription-translation coupling. Despite the existence of multiple expressomes with varying mRNA loop lengths, their in vivo roles remain largely unexplored. This study examines the mechanisms governing transcription termination in the Escherichia coli galactose operon, revealing a crucial role in the transcription and translation coupling state.
View Article and Find Full Text PDFNat Commun
January 2025
Material Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, USA.
The sex chromosomes contain complex, important genes impacting medical phenotypes, but differ from the autosomes in their ploidy and large repetitive regions. To enable technology developers along with research and clinical laboratories to evaluate variant detection on male sex chromosomes X and Y, we create a small variant benchmark set with 111,725 variants for the Genome in a Bottle HG002 reference material. We develop an active evaluation approach to demonstrate the benchmark set reliably identifies errors in challenging genomic regions and across short and long read callsets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!