Articular cartilage injuries are very frequent lesions that if left untreated may degenerate into osteoarthritis. Gene transfer to mesenchymal stem cells (MSCs) provides a powerful approach to treat these lesions by promoting their chondrogenic differentiation into the appropriate cartilage phenotype. Non-viral vectors constitute the safest gene transfer tools, as they avoid important concerns of viral systems including immunogenicity and insertional mutagenesis. However, non-viral gene transfer usually led to lower transfection efficiencies when compared with their viral counterparts. Biomaterial-guided gene delivery has emerged as a promising alternative to increase non-viral gene transfer efficiency by achieving sustained delivery of the candidate gene into cellular microenvironment. In the present study, we designed hyaluronic acid-based gene-activated cryogels (HACGs) encapsulating a novel formulation of non-viral vectors based on niosomes (P80PX) to promote MSCs in situ transfection. The developed HACG P80PX systems showed suitable physicochemical properties to promote MSCs in situ transfection with very low cytotoxicity. Incorporation of a plasmid encoding for the transcription factor SOX9 (psox9) into HACG P80PX systems led to an effective MSCs chondrogenic differentiation with reduced expression of fibrocartilage and hypertrophic markers. The capacity of the developed systems to restore cartilage extracellular matrix was further confirmed in an ex vivo model of chondral defect.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jconrel.2023.09.008 | DOI Listing |
Sphingolipids are an essential lipid component of the skin barrier with alterations in skin sphingolipid composition associated with multiple skin disorders including psoriasis, atopic dermatitis, and ichthyosis. Contributions to skin sphingolipid abundance are not well characterized, thus the main method of modulating skin lipid levels is the topical application of creams rich with sphingolipids at the skin surface. Evidence that diet and gut microbiome function can alter skin biology proposes an intriguing potential for the modulation of skin lipid homeostasis through gut microbial metabolism, but potential mechanisms of action are not well understood.
View Article and Find Full Text PDFThe role of immune cells in neurodegeneration remains incompletely understood. Our recent study revealed the presence of mucosal-associated invariant T (MAIT) cells in the meninges, where they express antioxidant molecules to maintain meningeal barrier integrity. Accumulation of misfolded tau proteins are a hallmark of neurodegenerative diseases.
View Article and Find Full Text PDFbioRxiv
December 2024
Rutherford Appleton Laboratory, Research Complex at Harwell, Didcot, Oxfordshire, UK.
Conjugation, the major driver of the spread of antimicrobial resistance genes, relies on a conjugation pilus for DNA transfer. Conjugative pili, such as the F-pilus, are dynamic tubular structures, composed of a polymerized pilin, that mediate the initial donor-recipient interactions, a process known as mating pair formation (MPF). IncH are low-copy-number plasmids, traditionally considered broad host range, which are found in bacteria infecting both humans and animals.
View Article and Find Full Text PDFBio Protoc
January 2025
Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya.
Agrobacterium-mediated gene transformation method is a vital molecular biology technique employed to develop transgenic plants. Plants are genetically engineered to develop disease-free varieties, knock out unsettling traits for crop improvement, or incorporate an antigenic protein to make the plant a green factory for edible vaccines. The method's robustness was validated through successful transformations, demonstrating its effectiveness as a standard approach for researchers working in plant biotechnology.
View Article and Find Full Text PDFThe subfamily Mileewinae in China comprises one tribe (Mileewini), four genera (, , , ), and 71 species, yet only 11 mitochondrial genomes have been published. This study aimed to elucidate ambiguous diagnostic traits in traditional taxonomy and examined phylogenetic relationships among genera by sequencing mitochondrial genomes from 16 species. The lengths of the mitochondrial genomes ranged from 14,532 to 15,280 bp, exhibiting an AT content of 77.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!