Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The COVID-19 pandemic wreaks havoc on healthcare systems all across the world. In pandemic scenarios like COVID-19, the applicability of diagnostic modalities is crucial in medical diagnosis, where non-invasive ultrasound imaging has the potential to be a useful biomarker. This research develops a computer-assisted intelligent methodology for ultrasound lung image classification by utilizing a fuzzy pooling-based convolutional neural network FP-CNN with underlying evidence of particular decisions. The fuzzy-pooling method finds better representative features for ultrasound image classification. The FPCNN model categorizes ultrasound images into one of three classes: covid, disease-free (normal), and pneumonia. Explanations of diagnostic decisions are crucial to ensure the fairness of an intelligent system. This research has used Shapley Additive Explanation (SHAP) to explain the prediction of the FP-CNN models. The prediction of the black-box model is illustrated using the SHAP explanation of the intermediate layers of the black-box model. To determine the most effective model, we have tested different state-of-the-art convolutional neural network architectures with various training strategies, including fine-tuned models, single-layer fuzzy pooling models, and fuzzy pooling at all pooling layers. Among different architectures, the Xception model with all pooling layers having fuzzy pooling achieves the best classification results of 97.2% accuracy. We hope our proposed method will be helpful for the clinical diagnosis of covid-19 from lung ultrasound (LUS) images.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.compbiomed.2023.107407 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!