Methionine and folate cycles along with transsulfuration comprise the one‑carbon metabolism (OCM) pathway. Amino acids and other nutrients feed into OCM, which is central to cellular function. mRNA abundance, proteins (Western blotting), and metabolites (GC-MC) associated with OCM were used to characterize these mechanisms in fetal tissues. Liver, whole intestine, and semitendinosus muscle were harvested from fetuses in 6 multiparous Holstein cows (37 kg milk/d, 100 d gestation). Data were analyzed using PROC MIXED (SAS 9.4). Protein abundance of BHMT was greatest (P < 0.01) in liver suggesting active remethylation of homocysteine to methionine. This idea was supported by the greater (P < 0.05) mRNA of CBS, BHMT, MTR, SHMT1, and MAT1A (encoding OCM enzymes) in liver. The antioxidant protein GPX3 had greatest (P < 0.05) abundance in liver, whereas the glutathione-transferase GSTM1 was 5-fold greater (P < 0.05) in intestine than liver and muscle. Greatest concentrations of glycine, serine, and taurine along with lower cysteine underscored the relevance of OCM in fetal liver. Phosphoethanolamine concentration was greatest (4-fold, P < 0.05) in intestine and along with the greatest (P < 0.05) mRNA of SLC44A1 (choline transporter), CHKA, and CEPT1 underscored the importance of the CDP-choline pathway. Greatest (P < 0.05) mRNA of PPARA, CPT1A, and HMGCS2 along with lower PCK1 in liver highlighted a potential reliance on fatty acid oxidation. In contrast, greater (P < 0.05) concentration of myo-inositol in muscle and intestine suggested both tissues rely on glucose as main source of energy. Future research should address how environmental inputs such as maternal nutrition alter these pathways in fetal tissues and their phenotypic outcomes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rvsc.2023.104988 | DOI Listing |
Anal Chim Acta
February 2025
Department of Chemistry, University of Waterloo, Waterloo, ON, Canada. Electronic address:
Background: Normothermic ex situ heart perfusion (ESHP) has emerged as a valid modality for advanced cardiac allograft preservation and conditioning prior to transplantation though myocardial function declines gradually during ESHP thus limiting its potential for expanding the donor pool. Recently, the utilization of dialysis has been shown to preserve myocardial and coronary vasomotor function. Herein, we sought to determine the changes in myocardial metabolism that could support this improvement.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Nutritional Sciences, College of Natural Sciences, The University of Texas at Austin, Austin, TX 78712, USA.
Glioblastoma (GBM), the most prevalent primary malignant brain tumor, remains challenging to treat due to extensive inter- and intra-tumor heterogeneity. This variability demands combination treatments to improve therapeutic outcomes. A significant obstacle in treating GBM is the expression of O-methylguanine-DNA methyltransferase, a DNA repair enzyme that reduces the efficacy of the standard alkylating agent, temozolomide, in about 50% of patients.
View Article and Find Full Text PDFBiomolecules
December 2024
Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy.
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.
View Article and Find Full Text PDFSheng Wu Gong Cheng Xue Bao
January 2025
Key Laboratory of Engineering Biology for Low-Carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
The efficient production of L-glutamate is dependent on the product's rapid efflux, hence researchers have recently concentrated on artificially modifying its transport system and cell membrane wall structure. Considering the unique composition and structure of the cell wall of , we investigated the effects of CmpLs on L-glutamate synthesis and transport in SCgGC7, a constitutive L-glutamate efflux strain. First, the knockout strains of CmpLs were constructed, and it was confirmed that the deletion of CmpL1 and CmpL4 significantly improved the performance of L-glutamate producers.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Precision Medicine Laboratory for Chronic Non-Communicable Diseases of Shandong Province, Institute of Precision Medicine, Jining Medical University, Jining, 272067, China.
Initially, it was believed that glycolysis and DNA damage repair (DDR) were two distinct biological processes that independently regulate tumor progression. The former metabolic reprogramming rapidly generates energy and generous intermediate metabolites, supporting the synthetic metabolism and proliferation of tumor cells. While the DDR plays a pivotal role in preserving genomic stability, thus resisting cellular senescence and cell death under both physiological and radio-chemotherapy conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!