Easy cleaning plus stable activation of glassy carbon electrode surface by oxygen plasma.

Bioelectrochemistry

Univ. Bordeaux, Bordeaux INP, CNRS, ISM, UMR 5255, F-33400 Talence, France; Univ. Bordeaux, CNRS, Bordeaux INP, CBMN, UMR 5248, F-33600 Pessac, France. Electronic address:

Published: December 2023

AI Article Synopsis

  • Glassy carbon (GC) electrodes are commonly used in bioelectrochemistry, usually requiring surface cleaning through polishing.
  • A study demonstrated that oxygen plasma exposure could effectively replace traditional polishing, resulting in improved cyclic voltammetry (CV) responses for fresh and treated electrodes.
  • Plasma treatment enhances surface properties and maintains performance stability for a week, suggesting a more reliable alternative for preparing GC electrodes in experiments.

Article Abstract

Glassy carbon (GC) electrodes are widely used in electroanalytical applications especially in bioelectrochemistry. Their use starts with an efficient surface cleaning and activation protocol, mostly based on surface polishing steps. We studied the use of an oxygen plasma exposure of GC electrodes to replace common polishing procedures. The cyclic voltammetry (CV) responses of ferrocyanide and ferrocene-dimethanol were used to compare brand new, surface-polished and plasma-treated GC electrodes. Plasma treatment induces CV responses with improved features, close to theoretical values, as compared to other methods. The plasma effects were quasi-stable over a week when electrodes were stored in water, this being explained by increased surface energy and hydrophilicity. Furthermore, when electroreduction of diazonium was performed on GC electrodes, the surface blockade could be removed by the plasma. Thus, a short oxygen plasma treatment is prone to replace polishing protocols, that display person-dependent efficiency, in most of the experiments with GC electrodes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bioelechem.2023.108551DOI Listing

Publication Analysis

Top Keywords

oxygen plasma
12
glassy carbon
8
plasma treatment
8
plasma
6
electrodes
6
surface
5
easy cleaning
4
cleaning stable
4
stable activation
4
activation glassy
4

Similar Publications

Cold atmospheric plasma (CAP) has emerged as a promising technology for neutralizing microbes, including multidrug-resistant strains. This study investigates CAP's potential as an alternative to traditional antimicrobial drugs for microbial inactivation. In the era of increasing antimicrobial resistance, there is a persistent need for alternative antimicrobial strategies.

View Article and Find Full Text PDF

Unraveling the Effects of Reducing and Oxidizing Pretreatments and Humidity on the Surface Chemistry of the Ru/CeO Catalyst during Propane Oxidation.

J Phys Chem C Nanomater Interfaces

January 2025

Department of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, Prague 180 00, Czechia.

This work investigates the surface chemistry of the Ru/CeO catalyst under varying pretreatment conditions and during the oxidation of propane, focusing on both dry and humid environments. Our results show that the Ru/CeO catalyst calcined in O at 500 °C initiates propane oxidation at 200 °C, achieves high conversion rates above 400 °C, and demonstrates almost no change in activity in the presence of water vapor across the entire studied temperature range of 200-500 °C. Prereduction of the oxidized Ru/CeO catalyst in H significantly enhances its activity, though this enhancement diminishes at higher temperatures.

View Article and Find Full Text PDF

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

Poor male fertility significantly affects dairy production, primarily due to low conception rates (CR) in bulls, even when cows are inseminated with morphologically normal sperm. Seminal plasma is a key factor in evaluating the fertilizing ability of bull semen. The extracellular vesicles (EVs) in seminal plasma contain fertility-associated proteins like SPAM1, ADAM7, and SP10, which influence sperm function and fertilizing potential.

View Article and Find Full Text PDF

Hydrogen production via water-splitting or ammonia electrolysis using transition metal-based electrodes is one of the most cost-effective approaches. Herein, ca. 1-4% of Pt atoms are stuffed into a wolframite-type NiWO lattice to improve the electrocatalytic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!